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ABSTRACT
Increasing number of smartphones have been equipped with
the heterogeneous multicore system, which consists of dis-
similar processors to balance performance and energy effi-
ciency of the device. To efficiently utilize this CPU architec-
ture for mobile web browsing, considerable optimization so-
lutions have implemented Application-Assisted Scheduling
(AAS) and frequency scaling. This paper evaluates whether
this technique could be applied to optimize the performance-
energy tradeoff at a finer granularity of JavaScript (JS) Web
APIs. To this end, we report on our benchmarks of JS API
executions at different CPU configurations. We found that
executing APIs at “big” cores running at high clock speed
generally results in the best balance between duration and
battery consumption, though each API’s optimal CPU con-
figuration may vary depending on execution-specific factors.
The comparison of optimal CPU configurations with respect
to the default Linux governors show that, when frequency
scaling and scheduling are done judiciously, each API ex-
ecution could benefit from a 26-41% reduction in energy
consumption, a 4-27% reduction in duration, and a 9-46.2%
reduction in Energy Delay Product (EDP). Assessing the
impact of JS API level optimization to the overall user expe-
rience is our future work.
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1 INTRODUCTION
Web browsing is one of the most popular smartphone ac-
tivities, as approximately 60% of universal web traffic ac-
counted for mobile devices in 2022. An open problem in
mobile web browsing is balancing the performance-energy
tradeoff. Users expect smooth responsiveness while interact-
ing with the web browser, but such a high level of perfor-
mance necessitates heavy CPU usage, potentially causing
significant battery drainage of the device. This problem often
stems from poor utilization of the device’s heterogeneous
multicore systems, which requires the OS kernel to accu-
rately determine the complexity of every task to make effec-
tive scheduling decisions. Unfortunately, Android devices
have not made optimal use of this architecture for handling
web browsing activities, primarily because the operating sys-
tem kernel lacks the knowledge of webpage-specific work-
load and is prone to making suboptimal scheduling decisions
[3, 13–15, 17].

A common approach to this problem is frequency scaling
and Application-Assisted Scheduling (AAS). This mechanism
allows for the browser to participate in scheduling and decide
which CPU configuration (type of CPU and frequency) to
use to handle specific web browsing tasks. Our research
is motivated by the fact that its potential optimization of
JavaScript (JS) execution has been relatively unexplored. In
particular, we focus on the set of JS Web APIs from [5],
which is a representative set of APIs commonly executed by
the browser’s JS engine throughout web browsing activities.
To evaluate the degree of optimization through frequency
scaling and scheduling at JS API level, we benchmarked the
performance and energy tradeoff from executing APIs at
different CPU configurations, and discuss our findings in
this paper.
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2 BACKGROUND
2.1 Scheduling in Heterogeneous

Multicore Systems
Heterogeneous multicore systems are composed of differ-
ent types of cores which are specialized for processing par-
ticular tasks. In mobile SoCs, this CPU topology is com-
monly used to achieve better energy efficiency. Most notably,
ARM’s big.LITTLE architecture pairs high-performance and
high power "big" cores with energy-efficient yet less per-
formant "LITTLE" cores, allowing the scheduler to allocate
high-intensity jobs on big cores and lightweight jobs on lit-
tle cores to improve battery life with minimal performance
tradeoff. For example, XiaoMi’s Redmi Note 10 5G, the de-
vice used throughout our benchmarks, comes with 2 Cortex-
A76 (big) cores and 6 Cortex-A55 (LITTLE) cores. These
two core clusters operate on different ranges of frequen-
cies, as the big cores scale from 0.725GHz to 2.203GHz while
the LITTLE cores scale from 0.5Ghz to 2GHz. Hence, the
performance and energy consumption of running any task
on heterogeneous-multicore mobile devices significantly de-
pend on the allocated CPU cluster (big or LITTLE) and their
clock frequencies.
Figure 1 shows the power profile values of all CPU con-

figurations for RedMi Note 10 5G. Provided by the device
manufacturer, the values specify the required power con-
sumption (in mA) of running each CPU cluster at a specific
frequency [1]. At its highest clock speed of 2GHz, a LITTLE
core only consumes a third of power required for a big core
at its highest frequency of 2.23GHz (74.45mA vs 212.36mA).
In addition, the power profile estimates that running at half
of the big core’s maximum frequency (1.129GHz) could yield
more than 62.3% reduction in energy consumption (79.92mA
vs 212.36mA). The examples both demonstrate the potential
of enhancing the battery life by leveraging the heterogeneous
multicore architecture and scaling frequencies. In Android
operating systems, the CPUfreq governor is the driver that
defines the characteristics of the system cores, such as the
rules for changing the cluster frequencies. There are several
types of governors, each with its own behavior and purpose.
The powersave governor intends to maximize energy sav-
ings by setting CPUs at their lowest frequency, while the
performance governor optimizes for heavy workload by set-
ting CPUs at their highest frequency. The default governor
in recent Android smartphones is schedutil which provides
dynamic frequency scaling: adjusting the clock speed with
respect to the system workload to balance performance and
battery life. Finally, the userspace governor allows the CPU
system to run at frequencies configured by any processes
running as root.

Figure 1: Power Profile Values for CPU Frequencies of
RedMi Note 10 5G

2.2 Chromium Architecture
Chromium is an open-source browser that provides the build-
ing codebase for many popular web browsers, including
Google Chrome, Opera, Microsoft Edge, and Brave. These
browsers follow a multi-process architecture in which there
is a single Browser process and multiple Renderer processes.
The Browser process is responsible for the general UI, net-
work requests, and management of Renderer processes. Each
Renderer process usually corresponds to a browser tab, us-
ing the Blink rendering engine and v8 JavaScript engine to
handle web browsing activities. The processes communi-
cate with each other over IPC channels and shared memory,
where the Browser process allocates the fetched web contents
into the Shared Resource Buffer for the Renderer process to
read and parse.

The Renderer process itself is further divided into multiple
threads, each with a specific role. The most important thread
is themain thread, which handles the DOM and CSS parsing,
JS execution, and the Render steps (style, layout, and paint).
Thus each JS engine instance of a Renderer process sched-
ules and executes JS in a single-threaded fashion per frame
[12]. A developer may implement multithreaded execution
of JS by utilizing Web Workers, but they are strictly limited
to CPU-bound tasks that do not access the DOM in order
to ensure thread-safety [7]. Other threads include the com-
positor thread, which composites the layers of web content
into the final image displayed on screen by generating GPU
commands.

3 RELATEDWORK
Web browsing activity can be broadly classified into 2 phases:
load and interaction. This section provides an overview of
prior optimization strategies proposed in the literature to
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enhance the performance and energy efficiency of mobile
devices for each of these phases

3.1 Frequency Scaling and AAS for Energy
Optimization

Several papers have explored and implemented the potential
benefits of dynamic voltage and frequency scaling (DVFS)
along with Application-Assisted Scheduling (AAS) for mo-
bile web browsing. Their common goal was to predict the
workload of web browsing activities, and determine their
optimal CPU configurations. Some notable examples utilized
machine-learning techniques and trained on static compo-
nents of websites (such as HTML, CSS and DOM informa-
tion) to develop prediction models of webpage-specific work-
load, which enabled energy savings during the loading phase
[13, 14, 18]. [3] proposed to integrate Quality of Service into
AAS, in which the browser’s threads would only migrate to
the big cluster when the frame rate gets below a specified
threshold.
To reduce battery consumption during webpage inter-

actions, [19] adjusted the CPU configuration throughout
runtime based on the expected latency and energy consump-
tion of frames triggered by browser events. [15] and [17]
both developed artificial neural networks to predict the min-
imum frame latency for an user interaction and determine
the optimal core configuration.
Our work is motivated by the findings of these prior

studies that have successfully achieved battery savings dur-
ing mobile web activities, without significantly compromis-
ing performance, through frequency scaling and scheduling.
Given the increasing complexity of JavaScript in modern web
applications, we investigated whether a similar optimization
approach could be applied to the finer level of granularity
offered by JS Web APIs. Therefore, our benchmarks serve as
a complement to previous research in this area.

3.2 JavaScript Analysis
Previous studies at JavaScript analysis largely focused on
minimizing the initial PLT (page load time) through code
mitigation. Uglifiers are widely used by web developers to
compress the size of JS files by removing all unnecessary
characters without changing functionality [2]. Other solu-
tions include classifying and removing unnecessary JS Web
APIs [5], blocking unnecessary JS elements [4], or elimi-
nating unused JS functions of web applications [9]. Polaris
improved PLT through optimizing the browser’s resource
fetch scheduling. In contrast, our work focuses on balancing
both performance and energy consumption throughout web
browsing activities. A more recent study suggested Web As-
sembly as the more energy-efficient alternative to JavaScript
for web application development [16]. While Web Assembly

Figure 2: Benchmark Setup

was beyond the scope of our focus on JavaScript Web APIs,
this paper also points at the energy efficiency of JavaScript
in modern web applications and possible room for further
optimization.

4 METHODOLOGY
The benchmark methodology aims to measure the duration
and energy consumption required for executing common
JavaScript Web APIs at different CPU configurations. This
section overviews the setup and the technical steps involved
in our benchmark pipeline.

4.1 Benchmark Setup
As shown in Figure 2, the setup consisted of two desktop com-
puters and an Android smartphone. We used Xiaomi Redmi
Note 5G as a representative mobile platform with heteroge-
neous multicore system. The smartphone was connected via
usb (charging was disabled during the benchmark) to the
second desktop in order to utilize Android Runner [10], a
framework for executing customized interactions and exper-
iments on Android devices. We developed a script to initiate
Android Runner for automating web browsing activities at
specific CPU configurations and subsequently collect trace
files for analysis, which we elaborate further in section 4.2.2.

The second desktop was used as a web server for 20 most
popular online news sites, in which their HTML and JS files
were modified beforehand for the benchmark. Using Esprima
[8], we identified every occurrence of JS Web APIs in the
web application codebase and wrapped each with Perfor-
mance Timing Markers [11], as shown in Figure 3. The perfor-
mance object provides 2 helper functions: performance.mark
to record named timestamps and performance.measure to
calculate time between named timestamps. By assigning an
unique identifier to the name of each Performance Timing
Marker, we were able to track the start time and duration of
every JS Web API execution at microsecond precision.
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Figure 3: Example of inserted performance marks

4.2 Benchmark Pipeline
Each benchmark run evaluated the performance-energy trade-
off of executing JS Web APIs at a specified CPU cluster and
frequency. To this end, we constructed a pipeline broadly
composed of 3 stages:

4.2.1 Setting Cluster Frequency and Chrome CPU Affinity.
Before simulating web browsing activities, we configured

each CPU cluster to a particular clock speed by leveraging
CPU performance scaling supported in LINUX-based sys-
tems. We wrote a simple shell script to set the governor of all
cores to userspace and subsequently modify their frequency
values in their respective scaling_setspeed files in sysfs. After
adjusting the processor settings, we altered the CPU affinity
of all threads belonging to Google Chrome’s Renderer pro-
cess using the tasket system call. The CPU affinity of relevant
threads would be set from 0th to 5th cores (6xCortex-A55)
to execute web browsing tasks on the LITTLE cluster, and to
the 6th and 7th core (2xCortex-A76) to solely utilize the big
cluster. Unfortunately, CPU affinity does not guarantee that
a thread would always be allocated to its associated core(s),
so we disabled the unused cluster for each benchmark to
prevent misallocations. On average, 88.2% of slices of the
Renderer process’ main thread were executed appropriately
at the specified CPU cluster and frequency. We observed that,
even after configuration, the clock speeds of certain cores
within a cluster infrequently fluctuated during the bench-
marks. We omitted such misallocated slices in our analysis.
We ran our benchmarks at 14 different CPU configurations,
7 from each CPU cluster.

4.2.2 Profiling Webpage Load and Interaction.
We customized Android Runner to automate web brows-

ing activities. Specifically, for each of the 20 modified news
websites, the device would load its web contents from an
internal network and perform programmed interactions. The
interactions included common browsing gestures, such as
scrolling and pinching. We noticed that initially loading
a webpage through Android Runner briefly sets the fre-
quencies of all cores to their maximum clock speeds. As
a workaround, our interaction script cleared the browser

cache and reloaded each page, which did not cause such sud-
den spikes in CPU frequencies. For robustness, we excluded
any data collected before the reload from our analysis.
Throughout each webpage activity, both Chrome Trac-

ing and Android’s System Tracing were conducted in the
background. Chrome Tracing profiles threads and activities
spawned by the Chrome browser, including the inserted
performance marks for tracking JS Web API executions. Sys-
tem Tracing uses Linux ftrace under the hood to report the
allocated thread and frequency of the device’s CPUs. The
2 generated trace files were collected after every webpage
benchmark for analysis.

4.2.3 Profile Analysis and Energy Consumption Evaluation.
Perfetto’s Python API was utilized to process and ana-

lyze JS Web API executions collected from the benchmarks.
Our analysis is based on the fact that JS is executed in a
single-threaded fashion by the Renderer process’main thread.
Hence, the CPU configuration(s) for a particular JS Web API
execution must correspond to that of the main thread during
the execution time interval. By synchronizing the times-
tamps of API executions recorded in the Chrome Tracing
file with the main thread’s processor allocations recorded in
the System Tracing file, we were able to identify the cores
and their frequencies involved in each execution. Note that
each API execution could be split into multiple slices due
to context switchings, and each slice could be allocated to a
different core (potentially running at a different frequency).
In other words, API execution and CPU configuration is
modeled by a one-to-many relationship, while slice and CPU
configuration must be one-to-one.

Let F = {𝑓1, 𝑓2...𝑓𝑛} be a set of JSWebAPI executions, where
𝑓𝑖 consists of a set of slices 𝑆𝑖 = {𝑠1, 𝑠2...𝑠𝑚}. We can calculate
the energy consumption of any arbitrary slice 𝑠 𝑗 by

𝐸 (𝑠 𝑗 ) = 𝑡 𝑗 ∗ 𝑃 (𝑐 𝑗 ) (1)

where 𝑡 𝑗 is the duration of 𝑠 𝑗 , 𝑐 𝑗 is the CPU configuration
of 𝑠 𝑗 , and 𝑃 (𝑐 𝑗 ) denotes the power profile value at 𝑐 𝑗 (plot-
ted in Figure 1). Then the energy consumption of 𝑓𝑖 can be
computed as

𝐸 (𝑓𝑖 ) = Σ𝑠 𝑗 ∈𝑆𝑖𝐸 (𝑠 𝑗 ) (2)

In other words, the energy consumption of an API execu-
tion is the sum of energy consumption of its slices, each of
which is computed as the product of slice duration and the
power profile value of the slice’s CPU configuration. This
approach establishes a comparison of energy consumption
required for web browsing activities at different CPU con-
figurations, and is akin to that employed in popular battery
profiling tools such as BatteryStats [6].
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(a) Duration (b) Energy Consumption

(c) EDP - big cluster (d) EDP - LITTLE cluster (e) EDP- both clusters

Figure 4: Comparison of Optimization Metrics Among Benchmarked CPU Configs.

5 RESULTS
Our benchmarks collected over 9,000,000 different executions
across 416 different JS Web APIs. We considered 3 lower is
better metrics: execution duration, energy consumption, and
energy delay product - computed as the product of execution
time and energy consumption.

5.1 Duration, Energy, and EDP
We present the comparison of the 3 key metrics across dif-
ferent CPU configurations at Figure 4, where each “x” mark
denotes the median value at a benchmarked CPU configura-
tion. We also illustrated the 25th and 75th percentile bound.
The results depicted in Figure 4a are consistent with our

expectations, as executing APIs at higher frequencies and at
the big cluster resulted in a substantial reduction in execution
time. Specifically, the average execution time for APIs at the
maximum frequency of the big cluster was found to be 2x
faster than that of the LITTLE cluster, while at the minimum
frequency, it was 2.6x faster. The LITTLE cluster’s maximum
frequency outperformed the big cluster only at its two lowest
frequencies.
Figure 4b presents a comparison of the average energy

consumption during the execution of APIs across the bench-
marked core configurations. For the LITTLE cores, we ob-
served that the reduced execution time at higher frequencies

initially leads to a lower battery consumption, which per-
sists until 1.28GHz, beyond which the energy consumption
scales up with the frequency once again. Similarly, the en-
ergy consumption of the big cores is generally aligned with
higher frequency. Upon comparing the LITTLE and big clus-
ters, we observed that the big cluster consumes more battery
life, especially at high frequencies. Our results indicate that
migrating to the LITTLE cluster when both clusters are oper-
ating at their maximum clock speed could potentially result
in up to 42% energy savings. However, it is worth noting that
while the difference in energy efficiency between the two
clusters is not negligible, it is comparatively smaller than
that observed in the case of execution time (Figure 4a), as
revealed by their interquartile ranges.
Figures 4c and 4d depict the average EDP values for the

big cluster and LITTLE cluster, respectively. We observed
a gradual decrease in EDP with an increase in frequency.
Specifically, at its maximum clock speed, the big cluster
demonstrated a 1.836 times reduction in EDP when com-
pared to its minimum clock speed. For the LITTLE cluster,
the maximum frequency saw 4.9 times reduction in EDP
with respect to its minimum. Figure 4e provides a compari-
son of the EDP values across both clusters. While the API
executions at the big cores generally yielded lower EDP, the
large variance observed in both clusters, as evidenced by
their interquartile range, suggests that the EDP values vary
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Figure 5: Dist. of Optimal Config. for each Optimization Metric

significantly with each execution, indicating that there may
not be a one-size-fits-all configuration for EDP optimization.

5.2 Distribution of Optimal CPU Configs.
We defined “optimal” core configurations for each API ex-
ecution as those result in the minimum value in the 3 key
metrics. Figure 5 depicts the distribution of optimal config-
urations among our benchmarked core configurations. In
terms of performance (measured by duration), the three high-
est frequencies of the big core were optimal in more than
97% of the APIs executions we benchmarked, of which 76%
were at the maximum frequency. In contrast, over 92% of the
optimal configurations for energy consumption belonged to
the LITTLE cluster. Notably, over 56% of API executions had
minimal energy consumption at the median configuration of
1.28GHz, while only 3% were optimal at lower frequencies.
This finding indicates that prolonging task executions at low
frequencies could potentially harm battery life, even at the
level of JS Web APIs.

Regarding the optimal configuration for EDP, we observed
that it generally belonged to the big cluster. Specifically, the
four highest frequencies of the big cluster were optimal for
EDP in over 87% of API executions. In contrast to the distri-
bution of optimal configurations for performance, however,
the distribution of optimal configurations for EDP did not
scale linearly with frequency. In addition, we noted that the
LITTLE cluster at high frequencies optimized EDP by an
order of magnitude more than the big cluster at low frequen-
cies. This suggests that certain APIs may be better executed
on LITTLE cores, and that the EDP values from executing

Figure 6: Optimization Metrics of Optimal Config.
w.r.t. Benchmarked Config.

at LITTLE cores with high frequencies may not be vastly
different from those executed on big cores.

5.3 Expected Improvement from Optimal
CPU Configs.

Figure 6 presents the expected improvements in the three
key metrics achieved by judiciously scheduling every API
execution to its respective optimal CPU configuration. We
calculate the expected improvement as the median of im-
provements from running at the optimal configuration with
respect to all other benchmarked CPU configurations. Each
boxplot in Figure 5 depicts the interquartile range of all ex-
pected improvements, with a green mark and an orange
line representing the mean and median, respectively. Our
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Figure 7: Optimization Metrics of Optimal Config.
w.r.t. Linux Governors

analysis shows that leveraging optimal configurations could
potentially reduce energy consumption, execution duration,
and EDP by 21-28%, 48-53%, and 43-52%, respectively. These
results further underscore the benefits of leveraging the op-
timal configurations to execute JS Web APIs.

5.4 Optimal Configs. vs Linux Governors
We expanded our investigation of optimal configurations
through comparisons with 3 different Linux governors - pow-
ersave, performance, and schedutil -, as shown in Figure 7.
Compared to the core configurations set by the powersave
governor, the optimal configurations for energy efficiency
saw 26-41% reduction in battery consumption. This can be
attributed to the fact that the powersave governor scheduled
the majority of JS Web API executions to the big cluster at
lowest frequency, while only allocating 16.5% to the LITTLE
cluster, as shown in Figure 8a.

Additionally, we observed that the optimal configurations
for performance outperformed the performance governor by
4-27% in terms of API execution duration. Figure 8b shows
that the performance governor scheduled 82.6% of API execu-
tions to the big cores at high frequencies, while the remaining
executions were scheduled to the big cores at low frequencies
or to the LITTLE cluster. We also found that the optimal con-
figuration yielded 9-46.2% less EDP when compared to the
schedutil governor. Contrary to our expectations, as depicted
in Figure 8c, the schedutil governor heavily utilized the big
cluster and high frequencies, which we suspect increased
the EDP value by consuming more energy.

5.5 Optimal Configs. per API
Our benchmarks indicate that, on average, each JS Web API
has 2 different performance optimization configurations, 3.16

energy optimization configurations, and 3.3 EDP optimiza-
tion configurations. This suggests that identifying the opti-
mal CPU configuration for executing a given API depends
not only on the API itself, but also on various execution-
specific factors such as the current state of the DOM tree.

Figure 9: Page-Level Energy Consumption

6 LIMITATION AND FUTUREWORK
Figure 9 depicts the average energy consumption of JS Web
API executions per webpage in our benchmarks. These mea-
surements are generally <5% of the total energy consumed
during web browsing activities on that page. This implies
that optimizing at the JS Web API level may not result in a
significant improvement in overall user experience. However,
considering that JSWeb APIs play a critical role in processing
user interactions, the benefits of optimization would increase
as the browser handles more user events. Consequently, our
future work is to extend the proof of concept presented in
this paper into an implementation, possibly as a dynamic
scheduler for Chromium’s V8 engine. Subsequently, a long-
term user study could follow to evaluate the impact of the
optimization on both the overall user experience and device
battery life.

7 CONCLUSION
This paper presents our findings on the benchmarks of JS
Web API executions at various CPU clusters and clock fre-
quencies. The results show that energy consumption could
be reduced by running APIs on the median frequencies of
the little core, while the big clusters at high clock speed gen-
erally result in reduced execution time and EDP. Through
a comparison of "optimal" configurations with other config-
urations and Linux governors, we demonstrate that there
is considerable potential for optimization through dynamic
frequency scaling and task scheduling across the three key
metrics even at the JS Web API level. However, considering
that most APIs have short execution times but are frequently
called during user interaction, further research is needed
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(a) powersave (b) performance (c) schedutil

Figure 8: CPU Config. Distribution for Linux Governors

to determine whether optimization at this granularity can
significantly enhance the mobile web browsing experience.
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