
MAML EDITOR: A Website Editor Supporting a
Restricted Subset of JavaScript Functionalities

Gideon Akosah
Computer Science, NYUAD

gaa382@nyu.edu

Advised by: Yasir Zaki, Thomas Potsch

ABSTRACT
There has been a significant increase in web page complexi-
ties in recent decades. These complexities, even though are
aimed at improving overall user experience, have incurred
extra overhead data costs especially to userswith low endmo-
bile devices. As well as spending more money on data, users
in developing countries with low end mobile devices are
not able to enjoy elegant browsing experiences. It has been
proven that JavaScript loading and parsing in web browsers
have been a main cause of these overheads. Due to these
reasons and a host of other reasons, there have been nu-
merous researches and implementations of different tools
aimed at improving the overall browsing experience. Poten-
tial solutions include optimizing websites’ loading process,
re-implementing interactive features using more efficient
programming languages, and limiting JavaScript libraries
and functionalities supported by web editors or browsers. An
existing approach, Mobile Application Mark-up Language
(MAML), represents web pages in a simple format at the
cost of inhibiting all JavaScript. This project explores dif-
ferent approaches to bring interactive features to MAML
pages. Previous research by my partner shows that simply
recompiling JavaScript into Go and WebAssembly does not
improve page loading time. As such, the aim now is to real-
ize MAML’s interactive features by supporting a restricted
subset of JavaScript functionalities. The editor consists of a
React-based front end and a back end implemented by Flask.
Web pages created by users are transported to the back end
in the format of MAML. The back end in turn translates the
MAML objects to HTML pages with minimum JavaScript

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 1, Spring 2022, Abu Dhabi, UAE
© 2022 New York University Abu Dhabi.

dependency. This report discusses the progress of the design
and implementation of the MAML editor. The aim of this
editor is to reduce the overhead costs associated with web
pages by allowing content creators to incorporate only the
most basic and important JavaScript functionalities of the
websites. For this semester, I extended the functionalities of
the editor by implementing a feature that allows users to
save, retrieve and reedit previously created pages.

KEYWORDS
page load time, web page simplification, JavaScript optimiza-
tion, website editor, web page interactive functionality
Reference Format:
Gideon Akosah. 2022. MAML EDITOR: A Website Editor Support-
ing a Restricted Subset of JavaScript Functionalities. In NYUAD
Capstone Project 1 Reports, Spring 2022, Abu Dhabi, UAE. 6 pages.

1 INTRODUCTION
Web page performance has become a major headache to
both developers and users in recent times. New technolo-
gies aimed at improving user web experiences have added
different layers of complexities to our web pages. These com-
plexities inadvertently affect the performance of the websites.
Even though there has been significant improvement in the
general internet infrastructures due to increases in band-
width, highly improved link media such as fiber optics, 4G,
5G and a host of other solutions aimed at providing super-
sonic internet access, there are still barriers affecting web
page performances. These barriers are not limited to inter-
net infrastructure but may include the browsing media and
developer’s decisions with respect to web page design. The
effects of these barriers are often prevalent in developing
countries where people do not have access to mobile phones
with high computing power, constant network connections
etc [1]. Page load times in underdeveloped countries can be
as long as 60 seconds, and more than half of users will aban-
don a page if it takes more than 3 seconds to load. Bad user
experience can affect businesses tremendously. It is estimated
that 53% of users leave the site if it takes more than 3 seconds



Capstone Project 1, Spring 2022, Abu Dhabi, UAE Awesome

for the website to load [2]. Also, research has found a strong
correlation between website speed and revenue, viewabil-
ity, bounce rate, session duration [3]. As a result, various
researchers have designed and implemented different solu-
tions aimed at improving the performance of web pages [4].
These solutions are often targeted to a different aspect of web
page infrastructure. While some of these solutions are aimed
at reducing the amount of JavaScript processed in client’s
browsers, other solutions are aimed at reducing the latency
of client-server interactions. JavaScript parsing has been de-
termined to be a major source of overhead costs in web page
loading times. This is mainly due to the recursive nature of
script loading inline HTML. The numerous network requests
made to load all these scripts invariably add huge delays as
well. This project aims to reduce this problem by creating an
interactive web editor which supports only a few JavaScript
functionalities. The editor is also based on MAML which is
a lightweight markup language that inhibits JavaScript and
represents web pages in a simplified manner. Since interac-
tivity is still an indispensable feature of many web pages,
this format ensures that our editor presents a significantly
faster loading times while sacrificing only a minimal and
often unimportant JavaScript functionalities for an improved
browsing experience. This work is a collaboration between
myself and a former capstone student, who worked mainly
on the front end. He implemented the web editor window
that allows creators to reproduce simpler versions of existing
web pages. My job was mainly focused on the back end. I
helped in converting the MAML objects created in the front
end to their corresponding lightweight HTML in the back
end as well as other server and database tasks. To extend the
features of this editor and to get an end-to-end functioning
product, I implemented a feature that allows users to reload
older pages and resume editing those pages. Users can now
save their works and retrieve them at anytime to resume
editing. This feature will enhance user experience as they
would not have to complete editing in one sitting. They can
always save their works and come back to them later.

2 BACKGROUND RESEARCH
Because we want to keep the use of JavaScript in editor-
generated websites to a minimum, the first part of the project,
which was mainly performed by my peer before I joined him,
was to look into the most prevalent website features that
use JavaScript. The aim of this exercise was to determine
the most prevalent JavaScript features that are absolutely
required in most if not all of the top Alexa websites. Our
web editor will then support only these features allowing the
resulting web sites to be as light as feasible while maintaining
the interactive elements that consumers require.

2.1 Preliminary Analysis
We used Amazon’s Alexa Web Ranking service to inspect the
world’s top 100 websites by traffic. Alexa ranks the websites
by a combined score of a website’s visitors and pageviews,
reflecting the popularity of websites in the entire world in-
stead of just developed regions like the US. For example, the
top 100 list consists of many websites catering to specific
geographical communities. Web portals of various devel-
oping countries, such as qq.com and sohu.com from China
and okezone.com from Indonesia, are included in the list.
By having these websites less known in other countries but
playing an important role in many regions with poor internet
infrastructures, the list allows us to analyze website func-
tionalities more comprehensively. We find that these web
portals widely used in developing countries have layouts we
were unfamiliar with. The analysis provided insights into
the usage of interactive components by different websites
and gave us ideas on the components the web page editor
should support.

2.2 Preliminary Analysis Methodology
To find the most used interactive features, we open each
website in the list, observe components that change automat-
ically, hover on different parts of the page, and click different
parts of the website. If we find any interactive event, we
then decide if the visual effects depend on JavaScript. For
example, many websites feature side menus and dropdown
bars that only appear when a user hovers the mouse over or
clicks specific components. These effects are often realized
by using JavaScript event listeners.

2.3 Preliminary Analysis Results
After exhaustive research on Alexa’s top 100 websites, we
came up with 11 top most JavaScript-dependent features that
are necessary to implement in our web editor. The features
are outlined below:

• Drop-down menu
• Loading of new content when the page reaches the
bottom.

• Display video preview when the mouse hovers over
the thumbnail

• Video Player
• Carousel.
• Component that appears after scrolling below a certain
point

• Countdown timer.
• Animation triggered by scrolling.
• Auto-animation.
• Toggle button that changes page theme.
• Notification window.



MAML EDITOR: A Website Editor Supporting a Restricted Subset of JavaScript Functionalities Capstone Project 1, Spring 2022, Abu Dhabi, UAE

Although JavaScript supports a vast variety of libraries and
has been a significant cause of website loading time, this re-
search demonstrates that most websites share many essential
capabilities. As a result, this initial examination reveals that
the website editor only requires support for a limited range
of JavaScript features. However, reviewing more websites
may lead to the discovery of additional interactive features
that the website editor should support. A future task of the
project may be to inspect more websites and categorize and
rank the interactive features. This way, we will have more
comprehensive information on the JavaScript-enabled func-
tionalities that we should consider implementing for the web
page editor.

3 DESIGN
The product we are building is similar to other web editor
tools like wix, WordPress etc. However the main difference
is that ours support conversion of the web page components
into MAML objects. Also, our web editor only supports a
limited number of JavaScript features. Because of these differ-
ences, our design decisions, even though may slightly mimic
those used in these products, have to incorporate other new
aspects that supports our own expectations.

3.1 Expected Product
We are anticipating an end product that looks similar to all
the other web editing tools on the market in terms of appear-
ance but differ in functionalities. In particular, text editing,
image upload, element positioning, and the inclusion of in-
teractive elements like buttons and side menus should all
be supported by the editor. Furthermore, the editor should
permit content producers to see the website in non-editable
mode. Additionally, the editor should export built web pages
in a format that is compatible with existing MAML imple-
mentations. As already implemented by my partner, our web
editor features a main editor window where the components
are placed. It also features a side menu which contains but-
tons that are used to select the specific component a user
wants to add to the editor window. Each button represents
a different functionality that may be implemented or not
depending on user’s preference. In this way, we can imple-
ment the functions of the editor incrementally. Each time,
we can add a new button and implement the functionality
with minimum JavaScript dependency. As stated earlier, my
main job was to set up back end functionalities for this web
editor as well as extend the functionalities of the front end.
Last semester, I created features to automatically generate
corresponding HTML scripts from MAML objects and im-
ages received from the front end. These pages can then be
served to the user in case they would want to continue their
page creation or editing. Also, I setup up user creation/login

options as well as authentication to ensure that users get
personalized experiences when using the product. I created
endpoints to receive images and maml documents while
creating personalized paths on the local disk of the server
to store contents for users separately. Also, I designed and
created all the database tables, models and corresponding
queries related to the project. Lastly, I implemented a sepa-
rate page where everyone can find all previously generated
pages and visit these pages accordingly. This semester, the
goal was to keep building and expanding the functionalities
of the web page editor. I designed and created a feature that
allows users to save unfinished work and return back to them
later. This feature will enhance user experience as it will no
longer require users to complete their work in one sitting.

3.2 Development Framework
3.2.1 React. Given the functionalities the editor should sup-
port, my partner decided to develop the front end of the
editor using React. React is a JavaScript library and a popular
solution to build user interfaces for web-based applications.
React treats a web page as different components that main-
tain their own state. Developers can define a component
to specify how it should look on the page by HTML-like
syntax and create and manage the component’s state. When
a component changes in its state, React re-renders the par-
ticular component without the need. to reload the whole
page. Components are also reusable, allowing developers
to quickly create components of the same style but differ-
ent content. These features of React are very useful for the
implementation of a web page editor.

3.2.2 NodeJs/NPM. Another set of tools the project depends
on is Node.js and its Node Package Manager (NPM). Using
Node.js to create and manage React applications is a widely-
used practice, and NPM hosts a large number of packages
and extensions that we can conveniently import into the
project. For example, a grid layout system supporting dy-
namic resizing and positioning is a complex task, and we
searched for existing solutions on NPM. As a result, we found
that an NPM package named react-grid-layout is used by
many people to manage pages with moveable, resizable com-
ponents. It allows users to drag and drop components and
implements a grid system where components snap into the
pre-defined positions. Comparing the package with several
other solutions such as react-moveable, another NPM pack-
age, we decided to use the react-grid-layout package as the
backbone of the web page editor, as it supports the afore-
mentioned functionalities that are going to be useful when
building a web page editor.

3.2.3 Python/Flask. The product is expected to be used by
significant number of people. As such I needed to choose a



Capstone Project 1, Spring 2022, Abu Dhabi, UAE Awesome

back end framework that is robust, fast and hugely supported.
For this purpose, I chose python with Flask as my main de-
velopment framework. Flask also has an extended rest API
library called restapix. This library supports communication
between the front end using the rest protocol. As most of the
data, that is going to be exchanged is in the form of Json data,
using the rest protocol seemed as an efficient way of design-
ing the back end controller. Flask also provides an efficient
means of exchanging files using the request.files library. As
our project involves a lot of file transfer, we needed flask to
provide better experience. Another advantage of using flask
is that it supports the use of sqlalchemy which is a robust in-
terface for interacting with the SQL database. SQL was used
as the main database tool. SQL was chosen because it is fast
and it provides a simplified client for database requests. The
back-end was designed using the Model-View-Controller
(MVC) architecture.

4 IMPLEMENTATION
The editor is a browser-based application that supports user
registration, authentication, editor state persistence, and
translation of MAML pages to HTML pages. Its front end
is implemented by React and its backend is implemented
by Flask. When a user visits the register and log in page,
they can either register as a new user or log in if they have
registered before. After logging in, users will be redirected to
the main editor window where they can start creating their
pages. This page consists a "save" option that allows users
to save their works midway. It also features a "view pages"
option that allows users to regenerate old saved pages. Users
can click the corresponding links and they will retrieve all
the assets that enable them to visit an old page.

Figure 1: An image of the editor window

4.1 RESUME EDITINGWINDOW
This is the window that allows user to regenerate older pages.
That takes a user here are in the editing window. By clicking
on corresponding links, users can regenerate the pages saved

pages. Hence this window provides dynamic contents based
on the page link that was clicked.

Figure 2: An image of the resume editor window

4.2 DATABASE MODELS
I started the back end by designing themodels of the database.
It was established by preliminary analysis that we needed
two models: User Model and Pages Model. The user model,
which had user id, user name, email and password fields,
is to be used to store user details of all registered users of
the platform. The page model, which had the page id, and
user id fields, is for storing all the pages generated by each
particular user. The user Id field in the page table establishes
a foreign key relation between the pages and the users. This
is very useful when regenerating pages for users to continue
their editing. I included another model: Post model. This
model allows users to save unfinished work. So it has one
column where maml objects are saved. This is called "con-
tent" column. The design is such that pages are regenerated
using their corresponding maml objects through reverse en-
gineering. So this column is needed for that purpose. I added
another column called the textMap where I saved all the
texts corresponding to a particular page. I use these texts for
regeneration purposes. Lastly the "post" table has userId and
postId columns that are essentially needed for customization.

Figure 3: An image of all the tables in the database

4.3 REST API ENDPOINTS/CONTROLLER
The project currently has five rest api endpoints responsible
for establishing communication between the front end and
the back-end. The first endpoint is the user sign up endpoint.



MAML EDITOR: A Website Editor Supporting a Restricted Subset of JavaScript Functionalities Capstone Project 1, Spring 2022, Abu Dhabi, UAE

Figure 4: An image of the "posts" table

This allows users to register for an account in the system.
This endpoints does not require any authentication hence
does not need any token permissions. The second endpoint is
the user sign in endpoint which allows registered users to log
into their accounts. It also does not require authentication.
The most important endpoint is the page upload endpoint.
This endpoint receives MAML objects of the page generated
by the user as well as images and any other files in the web
page. They are then stored on the local disk of the web server
using the specific user data to describe the path on the disk.
This helps to protect data integrity of each user. The MAML
objects are then used to generate the corresponding .html
files of each page and again stored on the local disk of the
server. The other endpoints are responsible for regenerating
user pages to enable users to reedit their pages as well as
listing all available pages in the database. For the feature
created this semester, we used three main endpoints. The
first one, addPost endpoint, is called when the user clicks the
save button on the editor window. This endpoint receives
maml objects corresponding to the created post as well as all
the images. It then stores the images on the local disk path
corresponding to each user and stores the maml objects and
the texts in the database. It then runs a function to transfer
all the images into the apache server to enable ease of image
retrieval. The other two endpoints allows the user to either
retrieve all saved posts or single saved post.

4.3.1 VIEW. : I needed not to implement much for this part
because the front end took a major responsibility for it. How-
ever, I implemented a view page using flask templates library
to display all the available users with their corresponding
pages. With this page, one can visit any page that has been
generated on this platform.

4.4 PAGE REGENERATION
This is the core of the resume editing feature. I needed a
way to regenerate react components based on data saved in
the backend. There are multiple ways this can be achieved.
However, after extensive analysis, I settled on using themaml
objects for each page. Maml provides descriptive data for
each component of our webpage. Since it was already being
generated in our project, it seemed like an easier choice
for the implementation of the feature. So the function that
regenerates the pages iterates through all the maml objects
and recreate the react components based on the type and
other features of the object. Since all these process had to

take place automatically, I used the react state management
tool "componentDidMount" to realize this function.

5 LIMITATIONS AND FUTURE PLAN
As the MAML editor supports limited webpage components,
some elements cannot be recreated using the MAML editor
at the moment. For example, webpages can have complex,
multi-layered dropdown menus and this is not supported by
the MAML editor. The editor also does not support elements
such as icon buttons and Twitter post plug-ins. Moreover,
many websites display images in webp format and this is not
commonly used by users who may use the MAML Editor.
The temporary solution during the webpage-making process
was to convert webp images into jpeg format, which causes
the file size to be different and introduces more variables
to the page loading time comparison As discussed earlier,
to develop a website editor for MAML format, the editor
needs to limit JavaScript code in created pages at a minimum
level and output pages in MAML-compatible formats. My
partner last semester focused on implementing the carousel
functionality. This semester, I extended the functionalities
of the editor by developing a window that allows users to
regenerate old pages and continue their editing work. The
plan for the future must be ways of incorporating the other
10 JavaScript functionalities that were discussed earlier in
order to create a complete system.

6 CONCLUSION
Continuing MAML’s effort to reduce page loading time, this
project aims to expand MAML by supporting a selected sub-
set of JavaScript. We researched the essential JavaScript-
dependent web page features to balance minimum web page
complexity and interactive feature compatibility. We have
implemented a huge part of the back-end, exported web
pages into MAML format and implemented the carousel
functionalities. We hope to expand these efforts in the future
to support more JavaScript functionalities and in the end
provide a better browsing experience for people in regions
with poor internet infrastructure.

REFERENCES
[1] 2016. Use of smart phones in developing regions. https:

//www.pewresearch.org/internet/2019/03/07/use-of-smartphones-
and-social-media-is-common-across-most-emerging-economies/.
[Online; accessed 6-May-2021].

[2] 2019. Mobile page speed new industry benchmarks-bounce v vs
loadtime. https://www.thinkwithgoogle.com/marketing-strategies/app-
and-mobile/mobile-page-speed-new-industry-benchmarks-load-
time-vs-bounce/. [Online; accessed 6-May-2021].

[3] 2019. Page speed report. https://unbounce.com/page-speed-report/.
[Online; accessed 6-May-2021].

https://www.pewresearch.org/internet/2019/03/07/use-of-smartphones-and-social-media-is-common-across-most-emerging-economies/
https://www.pewresearch.org/internet/2019/03/07/use-of-smartphones-and-social-media-is-common-across-most-emerging-economies/
https://www.pewresearch.org/internet/2019/03/07/use-of-smartphones-and-social-media-is-common-across-most-emerging-economies/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks-load-time-vs-bounce/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks-load-time-vs-bounce/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks-load-time-vs-bounce/
https://unbounce.com/page-speed-report/


Capstone Project 1, Spring 2022, Abu Dhabi, UAE Awesome

[4] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrish-
nan. 2016. Polaris: Faster Page Loads Using Fine-grained Depen-
dency Tracking. In 13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/netravali

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali

	Abstract
	1 Introduction
	2 Background Research
	2.1 Preliminary Analysis
	2.2 Preliminary Analysis Methodology
	2.3 Preliminary Analysis Results

	3 DESIGN
	3.1 Expected Product
	3.2 Development Framework

	4 Implementation
	4.1 RESUME EDITING WINDOW
	4.2 DATABASE MODELS
	4.3 REST API ENDPOINTS/CONTROLLER
	4.4 PAGE REGENERATION

	5 Limitations and Future Plan
	6 Conclusion
	References

