
An Imageless Internet
Joseph Hong

Computer Science, New York University Abu Dhabi
joseph.hong@nyu.edu

Advisors
Yasir Zaki

yasir.zaki@nyu.edu
Matteo Varvello

varvello@gmail.com

ABSTRACT
In recent years, there has been growing concern over the environmental impact of the
internet, particularly the energy consumption and carbon emissions associated with data
storage and transmission. One potential solution to reduce the carbon footprint of the
internet is to replace images with generated images using machine learning algorithms.
By generating images on demand instead of storing and transmitting images, the energy
and carbon emissions associated with them could be reduced, alongside page load times
as clients would no longer need to wait for an entire image to be downloaded. This paper
is a feasibility study of how using image generation techniques can address these issues,
and is also an exploration of the benefits that dynamically generated images can bring to
the internet, both in terms of energy savings and speed.

1 INTRODUCTION
Images have always been a foundational and major
form of communication and information exchange,
and since their digitization they have been an
essential part of web pages. With the advent of
high-resolution displays and the growing demand for
visually appealing content, images have undergone a
transformation. They have evolved from small,
compressed files to larger, high-quality images that
showcase intricate details and vivid colors [1]. While
this has undoubtedly enhanced the user experience
and enabled more stimulating visual content, it has
also given rise to several issues.

One of the key challenges lies in the energy
consumption and load times associated with
image-heavy web pages, particularly in
low-bandwidth environments [2]. Traditional
approaches rely on content delivery networks
(CDNs) to store and transmit images from servers to
end-users [3]. However, the larger file sizes of
high-quality images have led to increased energy
consumption in data centers and CDNs, which are
responsible for storing and serving images to users
across the internet.

CDNs have had to allocate more storage space
and computational resources to accommodate the
growing demand [4]. This translates to higher energy
consumption by the servers that store and transmit
these images, as well as the cooling systems required
to maintain optimal operating conditions [5]. The
transmission of these larger images also incurs costs
in terms of network bandwidth and data transfer.
Transmitting image packets from servers to
end-users requires the packet to be passed through
routers from one end to the other, which results in
increased energy consumption–– lower bandwidth
and further distance from the CDN server can
additionally lead to slower page load times [2]. As
the demand for high-quality images continues to
rise, these costs become even more substantial, both
economically and environmentally [5].

Consequently, addressing the energy
consumption and efficiency challenges associated
with image generation and transmission has become
a pressing concern. A promising solution is to shift
the image generation process to the client-side, using
the client’s graphic hardware in order to generate
images on the fly. This paper is a feasibility study of

how using image generation techniques can address
these issues, and is also an exploration of the
benefits that dynamically generated images can
bring to the internet, both in terms of energy savings
and speed. In addition, this paper provides the
framework for tools that could assist in this solution,
such as a machine learning model that can provide
optimal parameters for image generation given a
prompt.

2 BACKGROUND
Over the past decade, the number of image requests
per page has shown little to no change, with an
approximate 9 percent increase between 2012 and
2023, currently at a median of 21 requests. However,
the total size of images on webpages has increased
dramatically, approximately 300 percent at 1,000
KB, in the same period. This means that, given
today’s average size of 2300 KB per webpage,
images make up nearly 44 percent of a webpage’s
size. It is important to note that the number of image
requests has decreased in the past decade, from an
average of 42 to 21 requests per webpage [6]. This
implies that, though the number of images per page
may have decreased, their size–– and in tandem their
resolution ––has increased.

It is not the first time that research into
decreasing image sizes has been conducted, but to
our knowledge the use of image generation
techniques to replace images with a line of text has
not yet been explored as an area of internet
optimization.

2.1 The Generative Learning Trilemma
In the past, image generation techniques were not
considered as viable candidates for reducing image
sizes due to a fundamental challenge known as the
generative learning trilemma. This trilemma arises
from the trade-off between image quality, sampling
speed, and the diversity of generated images [7].

Traditionally, the focus of image compression
techniques was to reduce image sizes while
preserving image quality as much as possible.
However, the generative learning trilemma suggests
that achieving high-quality and diverse image
generation simultaneously while keeping the
sampling time low is an inherently difficult task. In
the context of the internet, where high-quality
samples are preferred, image generation models
either prioritized sample diversity, as with flow and

diffusion models, or sampling speed, as with general
adversarial networks (GANs), but never were able to
achieve both [8-10]. Thus, this approach was not
suitable for replacing images on the internet.

However, recent advancements in machine
learning, particularly latent and stable diffusion [11],
have shown promise in addressing the generative
learning trilemma to some extent. These algorithms
strike a balance between image quality, diversity,
and sampling speed, making them viable options for
generating images with reduced energy consumption
and high-quality samples, all the while being
computationally inexpensive and fast [11]. As a
result, image generation has emerged as a potential
solution to sustainable image storage and
transmission, as well as faster page loading times.

2.2 Stable Diffusion
Stable Diffusion (SD), the image generation that this
paper uses to test the effectiveness of the solution, is
a modified latent diffusion model (LDM) [11].
LDMs, also known as denoising diffusion
probabilistic models, are a variant of diffusion
models that combine the concepts of diffusion
processes and latent variable models. These models
offer a powerful framework for image generation by
explicitly modeling a latent space and utilizing
diffusion steps to gradually refine the latent
variables.

In LDMs, the generative process involves
iteratively updating the latent variables rather than
directly modifying the pixel values. The latent
variables capture high-level representations of the
images, such as semantic features or abstract
concepts. Through the diffusion steps, the latent
variables are refined to generate coherent and
realistic images. In addition, working in the latent
space means that LDMs can compute data faster
than a diffusion model while maintaining image
quality and diversity–– addressing all three areas of
the trilemma [7].

2.2.1 Limitations
In general, a larger number of inference steps, which
denoise the image and give it more detail, result in a
more convincing output image, directly related to the
image quality [11]. However, there are some areas
where this does not always apply: human hands and
faces. The majority of images depicting humans that
showed appendages, hands, or faces tended to be

awkward or unconvincing. In this case, a larger
number of inference steps proves to be helpful, but it
does not solve the issue. However, SD is able to
depict landscapes, animals, and items even with a
low number of inference steps.

This is likely due to the dataset that SD was
trained on, the LAION Aesthetic dataset [12],
composed of a large number of paintings and artistic
photography. Perhaps as a result of this, SD is
capable of generating convincing images of
landscapes, animals, or items even with a low
number of iterations, while it struggles to generate
realistic portrayals of humans, particularly in context
of their hands, appendages, and faces. This meant
that the training set would probably have to be
diversified in order to produce more realistic,
artefact-free results. In addition to this, other image
modification models such as GFPGAN, which helps
restore faces in images, were examples of possible
fixes to the issue [13].

2.2.1 Negative Prompts
Negative prompts are also a tool that can help
address the artefact issue with human limbs. These
allow the user to tell the SD model what not to
display in the result, and is crucial to the sampling
process in SD 2.0 because of how it was trained.
This allows a user to change specific details in
images, such as specifying for an absence of snow or
removing a specific color, or something more
general, by adding disfigurement or blurriness to the
negative prompt. The negative prompt does not
come in the code by default and requires the addition
of a neg_prompt as an argument in the
unconditional model, run alongside the generative
one to guide the process [14].

2.3 Page Load Time
The page load time refers to the amount of time
taken to load an entire webpage with its contents.
This usually comes from a CDN server, which
provides data packets from a cache.

2.4 CDN Servers
CDN servers are crucial components of the internet
infrastructure that store and distribute content,
including images, to end-users efficiently. Here,
there are two main forms of energy consumption that
occur regarding images: transmission and storage.

In image transmission, it is not only the CDN
server’s transmission that must be considered, but
also the routers along the path from the server to the
client. Depending on the distance of the client from
the closest CDN server, the energy consumption will
differ. To analyze the efficiency in energy
consumption of transmission, there is a need to
compare the energy consumption of an image
transmission from a CDN server to that of
generating an image from the client-end after
receiving the textual prompt from the CDN server.

In terms of storage, CDN servers require
significant amounts of electricity to power and
maintain the server hardware, including the storage
devices and associated cooling systems. The energy
consumption of these servers is continuous, as they
need to be operational 24/7 to serve content to users
globally. The scale of CDN operations, with
numerous servers distributed across different
locations, further amplifies the energy requirements
[15].

When considering image generation as a
solution to image storage, this is synonymous to
analyzing the amount of storage space that can be
saved when converting images into a combined
prompt, the concatenation of the alt-text of an
image file and a specialized prompt generated by an
img2prompt model, meant to not only give context
but also the specifications of a given image. In
addition, the number of times the image will be
accessed is also important as it would mean the
image would be dynamically generated each time,
resulting in further energy consumption.

3 METHODOLOGY
3.1 Image Collection
The image-collecting script, or web crawler, was
written on Python using the Selenium library [16]. It
would take a list of URLs, then from each page
collect all elements within the website that contained
the tag. From these elements, the web
crawler then extracts and records the alt-text and
dimension attributes into a CSV file. While testing
the initial script, there were three main observations
and resulting modifications that needed to be made.

The first was that there were many images that
had no alternate text available. However, the larger
elements that were within oftentimes had contextual
text that could replace the alt-text attribute’s role in
the image generation process. In addition, these

images could be placed deep within <a> elements
while having their contextual alternate text in
different <p> elements. Thus, the script was
modified to search within elements, both within and
outside of the image in question, to find contextual
alternate text in the case that there was no alternate
text as a replacement to its alt-text attribute.
Some testing led to the conclusion that dynamically
programming this would be difficult, so some
websites were hardcoded to match their image
placement format.

The second observation had to do with the
format of the images on websites. A presumption
that had been made was that image elements on
websites would use the tag in an isolated
format. This was not the case, as different websites
would not only use different tags such as <pic> and
<figure>, but also would sometimes forgo using
HTML elements altogether, loading the image from
CSS using the background-img property without
an alternate text. This required that the script look
for different image element formats.

Finally, the third observation was that the script
was collecting images that were either unnecessary
or did not need to be part of the converting process.
These included advertisements or icons of the
websites, of which the former would be constantly
changing and the latter requested to be kept constant
by the owner of the website. To address this, the
script was modified to look for keywords such as
analytic, advertising, marketing and checked the
dimensions of an image to ignore any images that
would be icons, usually with dimensions smaller
than 100 by 100 pixels.

3.2 Additional Image Statistics
Google BigQuery was the main source for
understanding how much of the top webpages use
images and how much of the page’s size they take up
[17]. To do this, the script would perform a SQL
query to the HTTP archive database labeled
202209_01_desktop and receive a result.
However, this took a few seconds for each query and
the plan was to check the top 100 thousand, then top
1 million webpages. Thus, a faster method needed to
be implemented.

In response to this, the script went through two
more iterations of lookups. The first was a script that
created subprocesses to search different sections of
the database to find matching queries. This method,

though faster than a single process lookup, still took
over 6 hours to go through 20 thousand queries. The
second iteration utilized the Python dictionary,
mapping the entire database before performing
lookups. Though this took a slightly longer startup
time, the lookups were almost instantaneous,
completing the lookup of all 1 million webpages in
less than five seconds.

Not all websites were found, however, with only
20 thousand of the top 100 thousand and 300
thousand of the top 1 million webpages having
entries in the BigQuery database. Regardless, the
results of how images play a large role in not only
content delivery but also webpage size became
increasingly clearer. Images accounted for an
average of 42 percent of total composition and 50
percent of total size in Tranco’s top 1 million
webpage [18].

Table 1. Statistics of top 1 million pages
Aggregate Image Requests / Total Requests

Percent Requests

41.8 15141692 /36258945

Aggregate Image Size / Total Size

Percent Mbytes

50.3 806545 /1355126

3.3 Image Generation
3.3.1 Stable Diffusion 2.0
SD 2.0 addressed many of the computational
inefficiencies that existed in its earlier versions, as
well as adding new features. It included the xformers
library by default, which implemented the
memory-efficient attention modification to the SD
model. In addition, the precision of the model was
set to autocast, meaning that it allows the model to
use half precision in the U-Net component of the
model, thus increasing speeds even further [19].

The new model also uses a new text encoder,
one of the core components of SD, an open-source
version of CLIP. This did not change computations,
but rather affected the contents of the outputs
themselves. OpenCLIP does not have the same
number of celebrities and artists in its dataset as the
previous models’ text encoders. Thus, it is harder to
represent specific art styles or celebrities with SD
2.0 [20].

As a result of this, SD 2.0 falls behind the
previous versions when it comes to representing art
styles or celebrities. On the other hand, it is much
more capable of producing realistic images,
particularly with the help of negative prompts, which
allow a user to specify what should not be generated
in the output image. Negative prompts do, however,
affect the performance of the model, portions of
samples to taking up to 4 seconds longer during
inference (see Figure 1, 2).

Figure 1. Ratio of samples (Y) and their inference
times (X) without negative prompts

Figure 2. Ratio of samples (Y) and their inference
times (X) with negative prompts

3.2.2 High Performance Cluster
We used the institution’s GPU high performance
cluster (HPC) to access Nvidia A100 PCIe graphics
cards for testing purposes [21]. In order to do this,
we needed to update the driver of the server to
support CUDA 11.2 and higher.

3.2.3 Parameters of Interest
There are several parameters used in SD, but of
these there are two that have a large influence on the
performance of the model. The first of these is the
guidance scale, which tells the model how closely to
stick to the prompt that it is given. In many cases, a
default value of 7.5 is given for SD models [19], as
it allows the model to create high-quality images at
lower iterations–– the second parameter of
importance. A higher number of iterations–– called
inference steps ––affects the model in two ways. On
one hand, it improves the quality of an image,
particularly fine-grain details [11]. On the other
hand, it increases the sampling time, something
undesirable in the context of using image generation
as a substitute for non-generated images. Thus, it is
important to find the balance between guidance scale
and inference steps to get the result with the highest
quality given a certain level of inference time.

We label a small pool of prompts in the eight
categories of ["food", "building",
"landscape", "object", "animal",
"public figure", "person/people",
"sports"] and find the parameters at which each
category is considered acceptable, which we call the
optimal parameters. Acceptable is defined as the
minimum inference steps at which an image’s
contents are recognizable. With this, we train a
convolutional neural network (CNN) to classify a
prompt given its context and assign the given
optimal parameters.

3.3 Page Load Times
To imitate the page loading, we created the tool
WebDiffusion, meant to act as a proxy of the
server, delivering content to a device on demand.
When a request for an image is made, the request is
redirected to a local server, which provides the
textual prompt corresponding to the image. This
prompt is used to generate an image using SD,
which is then sent to the client-end device.

3.4 Energy Consumption
As aforementioned, there are two areas of interest
when it comes to the energy consumption of CDN
servers and images: transmission and storage.

3.4.1 Transmission
Obtaining a clear formula for the energy
consumption of transmitting a data packet can be
challenging due to various factors and complexities
involved in the transmission process. The energy
consumption depends on multiple variables,
including the network infrastructure, transmission
medium, equipment efficiency, packet size, and data
transfer protocols [5].

The energy consumption of transmitting a data
packet can vary depending on the specific network
infrastructure and equipment used. Different
network technologies, such as wired, wireless, or
cellular networks, have varying energy efficiency
characteristics and protocols. Additionally, the
efficiency of network equipment, such as routers,
switches, and network cards, can vary across
different manufacturers and models [22].

The size of the data packet being transmitted
plays a significant role in energy consumption.
Larger packet sizes generally require more energy to
transmit due to the increased data payload. However,
modern data transfer protocols, such as TCP/IP,
often break data into smaller packets for efficient
transmission, and the overhead associated with
packet headers and acknowledgments can also
impact energy consumption [23].

Data transfer protocols involve additional
overhead for error correction, flow control,
congestion control, and other functionalities. These
protocol overheads contribute to the total energy
consumption during packet transmission. The
specific implementation and efficiency of these
protocols can vary, making it challenging to derive a
universal formula for energy consumption.

Even so, in order to understand the benefits that
image generation may bring, there needs to be some
kind of standard to compare its functionality to [23].

Here, P is the total power consumption, Pidle
represents the power consumption of a router when
idle, EP is the energy required for per-packet
processing and ES&F is the energy required to store
and forward a packet. Rbyte is the input byte rate,
while Rpkt is the input packet rate.

We adopted the same theoretical system that the
authors used in the paper, assigning values to the
various equipment used in the study. This included

the installed bandwidth capacity and the energy
parameters as follows:

Table 2. Energy consumptions for different devices [23]

In addition to this, there are also costs at the
CDN server level. This includes the server energy
consumption, as well as the transmission energy
consumption. For the sake of simplicity, we assume
that a surrogate server on the same Tier ISP where
the request was generated has the image (is a hit).
The server energy consumption can be defined as

Eserver =
𝑚
∑𝐵𝑟

𝑚
𝐸
𝑠𝑟

Here, B is the content size, rm is the number of
requests for the m, the content, and Esr is the server
energy consumption per bit [22].

On the other hand, the transmission energy can
be defined as

Etransmission =
𝑚
∑𝐵𝑟

𝑚
[𝐸

𝑠𝑟
(𝐻

𝑠𝑑
𝐴 + 1) + 𝐸

𝑙
𝐻
𝑠𝑑
𝐴

Here, refers to the number of hops to fetch𝐻
𝑠𝑑
𝐴

content from a surrogate on the same Tier ISP, El
refers to the link energy consumption per bit, and Er
refers to the router energy consumption per bit [22].

3.4.2 Storage
As CDN servers typically store multiple copies or
replicas of content to ensure high availability and
reliability, storage becomes one of the most
energy-consuming aspects from a long-term
perspective. The maintenance of redundant copies
requires additional storage space, which increases
energy consumption. Redundancy is crucial to
prevent data loss and ensure uninterrupted content
delivery, but it comes at the cost of increased energy
requirements.

The storage devices used in CDN servers, such
as hard disk drives (HDDs) or solid-state drives
(SSDs), consume energy during data read and write

operations. These devices require power for spinning
disks, moving read/write heads, and managing data
access. The longer data, particularly an image, is
stored in a CDN server, the less likely it is to be
accessed in the long-term future. However, as the
amount of stored content increases, the number and
capacity of storage devices also increase, leading to
higher energy consumption [5].

A possible formula for energy consumption is
the following:

Estorage =
𝑚
∑𝐵𝑛

𝑚
𝑃
𝑠𝑡
𝑡

Here, t is the time period in which the energy
consumption is computed, nm is the replicas of m,
and Pst is the energy consumption for storage per bit
[22].

3.4.3. Generation
Due to the nature of an electronic device, there is a
lot of fluctuation in the amount of power that is
drawn at a given point in time, so we determined the
method of calculating the energy consumption as the
amount of power the GPU draws when generating an
image. Thus we define the energy consumption for
an image as:

P = (MpcU)Ti

Here, P is once again the total power consumed, Ti is
the total time of inference in seconds, U is the
utilization factor of the GPU, and Mpc is the
maximum power consumption of the specified GPU.
Though it is very unlikely that a GPU will draw at
maximum power, it still provides a good reference as
it is the ceiling the GPU will reach before throttling
speed to lower temperatures [24], and also considers
CPU utilization, which tends to be constant.

3.4.4 Other Costs
There are other costs that are associated with server
storage, transmission, and image generation, such as
the constant power consumption for computers and
routers. However, as this is a comparison between
the two methods, the additional costs that are
common between them are not considered in this
paper.

4 SIGNIFICANCE
This method involves leveraging the computational
capabilities of users' devices, which have been
improving manifold over the past years. By utilizing
machine learning algorithms and frameworks
directly on the user's device, images can be
generated dynamically, reducing the reliance on
server-side transmission, and decreasing load times.
This approach not only alleviates the strain on CDNs
and reduces energy consumption but also enhances
the user experience, particularly in low-bandwidth
environments where network limitations are
prevalent.

By adopting client-side image generation, the
internet ecosystem can achieve multiple benefits. It
minimizes the energy consumption associated with
server-side image transmission, thereby reducing
carbon emissions. Additionally, it empowers users
by leveraging their devices' processing power and
decreases the reliance on bandwidth-intensive
operations. As a result, image-heavy web pages can
be loaded faster, ensuring a smoother browsing
experience for users, regardless of their network
limitations.

5 RESULTS
5.1 Collected Images and Prompts
The script was used to collect information from 500
of the top 1 million websites on Tranco’s list.
However, some of the webpages failed to load and,
even with modifications, the script was able to
collect 1,870 images and their contexts from 200
different webpages.

Here, the img2prompt model was used to
generate additional annotation for the images that
were collected to give more information for the SD
model to use when generating an image, creating
combined prompts. On average, each of these
prompts consisted of 194 bytes.

5.2 Image Generation
The combined prompts were used to generate
images once using the Nvidia A40 and another time
the Nvidia A100 40GB PCIe [21,25].

5.2.1 Performance
The A100 sampled images of 512x512 in 3.8
seconds at 50 steps. In comparison, with the A40 on
SD 1.4, a 512x512 image at 20 steps took 3 seconds.

An image at 20 steps using SD v2 and the A100 took
1.5 seconds to complete (see Table 2).
These results were in line with the benchmarking of
the SD model done by Lambda Labs [26], which
included not only the A100 but also other GPUs and
their sampling times for images generated with 50
inference steps (see Table 3).

Table 3. Average Speed of A100 in HPC server using
with SD 2.0

Steps Time Taken (sec)

10 0.960

20 1.681

30 2.474

40 3.118

50 3.828

60 4.752

70 5.386

80 6.249

90 6.751

Table 4. Speed of various GPUs on SD [26]
GPU Precision Time

(sec)
Nvidia A100 80GB PCIe half 3.74

Nvidia GeForce RTX 3090 half 4.83

Nvidia RTX A6000 half 5.03

Nvidia RTX A5500 half 5.05

Nvidia GeForce RTX 3080 half 5.59

Quadro RTX 8000 half 5.93

5.2.2 Oneflow
SD, when coupled with the features and
optimizations offered by the OneFlow deep learning
framework, brings notable speed improvements to
image generation tasks.

When combined with OneFlow, it benefits from
the framework's efficient GPU acceleration, memory
management techniques, model parallelism,
optimization algorithms, and hardware-awareness,
resulting in faster image generation, up to 49.65
iterations per second [27].

5.2.3 Qualitative Analysis
We performed a qualitative analysis on the generated
images through user feedback on Prolific, having
them rate the score of the image on a 5-point scale
from “Very Poor” to “Very Good.” The images for
the qualitative analysis were generated at 20
inference steps to keep neutrality between the
different parameters that may have been required for
each subject. The categories of food and landscape
scored between “Good” and “Ok” but the other
categories were either ranging between the minimum
threshold of “Good” or between “Ok” and “Poor.”

5.3 Page Load Times
We used three Web performance metrics:
SpeedIndex (SI), Page Load Time (PLT), and the
time it took for the page to become visually
complete (VC). However, of these VC is the best
metric as most of the page loading time is spent in
the generation of the images. This is due to how the
SI would be triggered prematurely as it measures
how quickly visual content appears, and the PLT
triggered too late due to the time it takes for all
images to be fully generated and displayed, as we
did not implement lazy loading.

The use of the intermediary image generator
caused a delay in the VC of about 5 seconds in a
simulated fast connection of 100 Mbps 20 ms RTT,
as opposed to the 2.3 second delay in a 20 Mbps 100
ms RTT connection. This difference is due to how
the image generator is not affected by the network,
as it is meant to be client-end. As a result, 40 percent
of webpages benefited from the intermediary image
generator under the simulated slow connection.

5.4 Transmission Costs
For this study, we use the case of
edition.cnn.com. We observed that
traceroute to edition.cnn.com resulted in the
packet traversing through 9 routers. 4 of these we
identified as campus/metro routers, and 5 of them as
high-capacity edge routers [23].

As high-capacity edge switches store data before
feeding them into edge routers, we identified 2 edge
switches along the path and 1 enterprise switch from
the university network.

5.4.1 Transmitting Full Images
When considering the average size that images take
in a website, approximately 1,000 KB, and assuming

a 1,500-byte packet length [23], the number of
packets would be approximately 667 packets. This
incurs about 22.967 J in energy consumption. On the
other hand, if the packet length was 100 bytes, this
would incur 172.298 J. The smaller the packet size,
the larger the energy consumption on transmission.

As for the server, assuming a hop length of 3
hops to reach the server to fetch content, a request of
1 user, a link energy consumption of 1.48*10-9 J/bit,
a router energy consumption of 1.2*10-8 J/bit, and a
server energy consumption of 2.81*10-7 J/bit [22],
the server energy consumption is 2.28 J and the
transmission energy consumption is 0.42 J. With
this, the total energy consumption in transmission
would be 25.635 J with 1,500-byte packets and
174.966 J with 100-byte packets.

5.4.2 Transmitting Textual Prompts
On the other hand, if we consider the average textual
prompt of 194 bytes, 200 if including a few more
characters for input parameters, then with the same
network the energy consumption in transmission
would be 4.27*10-5 J with 1,500-byte packets, or
5.99 * 10-5 J with 100-byte packets.

5.5 Storage Costs
Using web.archive.org to access archived CNN
pages showed that most images were still being
stored on their servers. Scraping 10 years’ worth of
news resulted in 73,881 unique images,
approximately 5.91 GB of storage.

5.5.1 Storing Full Images
Assuming that these images will remain in the server
for the next year and the power consumption per bit
stored is 7.84*10-12 [22], with at least 5 replicas
across all CDN servers, the total energy
consumption of storage is approximately 138,248.79
kJ.

5.5.2 Storing Textual Prompts
On the other hand, using textual prompts would
mean that 73,881*200 = 14.78 MB would be stored.
The total energy consumption of storage in this case
is 345.65 kJ.

5.6 Generation Costs
Our observations during the image generation
process showed that there was an average of 70
percent GPU utilization with 4 cores. Given that the

Nvidia A100 40GB PICe graphics card has a
maximum power consumption of 250 W [21], we
performed calculations for SD image generation
with and without the OneFlow implementation (See
Table 4).

Though this may be an overestimation of the
actual consumption that occurs in the image
generation process, it provides insight on the
relationship between inference time, steps, and
energy consumption.

Table 5. Power consumed in image generation
Without OneFlow OneFlow

Steps 30 50 30 50

Power
Consumed

(J)
432.95 669.9 105.74 176.234

7 CONCLUDING REMARKS
While image generation has made significant
advancements and can produce high-quality images
at relatively low cost and speed, there are several
reasons why it is not feasible as a solution to
replacing images on the internet.

The most intuitive reason is that these models do
not yet outperform the current systems that are set in
place, in terms of speed and energy consumption.
Even though client-end hardware has improved and
continues to improve at an impressive rate, only
high-end GPUs are able to run these models at fast
speeds. The A100 is by no means a graphics card for
the average desktop user. Though other GPUs can be
used to generate images, they still do not have the
ability to generate samples at high speed–– and thus,
the trilemma appears once more.

Despite this, it is important to note that there
continue to be improvements on both the hardware
and software ends: inference speeds have doubled
between the first release of SD and SD 2.0, and have
doubled again with the OneFlow implementation. As
an open-source model, SD has seen many
improvements as developers have taken the model
apart and found ways to make it faster and more
efficient [28]. This will likely continue with the
updates that come, as well as if the upcoming SD
XL is open-source [29].

Another reason why image generation will likely
be unable to replace images entirely is due to
specific image requirements. Models such as

Midjourney v5 have been shown to sample very
realistic images, but at the same time certain
applications of images require specific attributes or
characteristics that are challenging to recreate. This
might be medical imaging, scientific research, or
historical documentation.

It is interesting to note, however, that–– given a
model can produce highly realistic outputs ––image
generation could find an application in
“compressing” archived images, as this already
shows savings in space and energy consumption,
particularly if the archived images are seldom
accessed. This should be taken with a grain of salt,
however, as not to conflict with the need to maintain
historical documentation. In any case, there are a lot
of images on news sites or blogs that might not need
to be entirely specific or factually accurate. Stock

photos, images of food, generic images of
landscapes or buildings; these are some of the
categories that do not necessarily need to be kept as
a full image on a server. Using a textual prompt to
preserve or even amplify the photo could be a more
cost-efficient way to store “images” on the internet.

In addition, image generation models may also
have an application in reconstructing lost images. If
an archived article or post has a broken link, the
proposed intermediary could be used to generate an
image using either the alternate text or context of the
page.

As a feasibility study, the paper’s aim was not to
attempt to prove that image generation techniques
outperform images on the internet today, but rather
to see if there are areas in which image generation
could help improve the internet.

REFERENCES

1. Li, Yiyi, and Ying Xie. “Is a Picture Worth a
Thousand Words? An Empirical Study of Image
Content and Social Media Engagement.”
Journal of Marketing Research, vol. 57, no. 1,
American Marketing Association, Feb. 2020, pp.
1–19.
https://doi.org/10.1177/0022243719881113.

2. Rajiullah, Mohammad. “Towards a Low Latency
Internet: Understanding and Solutions.”
ResearchGate, Nov. 2015,
https://doi.org/10.13140/RG.2.1.4328.3601.

3. “Faster Web Through Client-Assisted CDN
Server Selection.” IEEE Conference Publication
| IEEE Xplore, 1 Aug. 2015,
ieeexplore.ieee.org/document/7288411.

4. “Power Consumption and Energy Efficiency in
the Internet.” IEEE Journals & Magazine | IEEE
Xplore, 1 Apr. 2011,
ieeexplore.ieee.org/document/5730522.

5. Jin, Chaoqiang, et al. “A Review of Power
Consumption Models of Servers in Data
Centers.” Applied Energy, vol. 265, Elsevier BV,
May 2020, p. 114806.
https://doi.org/10.1016/j.apenergy.2020.114806.

6. “HTTP Archive: Page Weight.” httparchive.org,
May 2023,
httparchive.org/reports/page-weight#reqImg.

7. Xiao, Zhisheng, et al. “Tackling the Generative
Learning Trilemma With Denoising Diffusion
GANs.” arXiv (Cornell University), Cornell
University, Dec. 2021,
https://doi.org/10.48550/arxiv.2112.07804.

8. A. Ramesh, M. Pavlov, G. Goh, S. Gray, C.
Voss, A. Radford, M. Chen, and I. Sutskever.
“Zero-shot text-to-image generation.” CoRR,
abs/2102.12092, 2021.

9. Nichol, Alex, et al. “GLIDE: Towards
Photorealistic Image Generation and Editing
With Text-Guided Diffusion Models.” arXiv
(Cornell University), Cornell University, Dec.
2021, https://doi.org/10.48550/arxiv.2112.10741.

10. Tao, Ming. “DF-GAN: A Simple and Effective
Baseline for Text-to-Image Synthesis.”
arXiv.org, 13 Aug. 2020,
arxiv.org/abs/2008.05865.

11. Rombach, Robin. “High-Resolution Image
Synthesis With Latent Diffusion Models.”
arXiv.org, 20 Dec. 2021,
arxiv.org/abs/2112.10752.

12. LAION-Aesthetics | LAION.
laion.ai/blog/laion-aesthetics.

13. TencentARC. “GitHub -
TencentARC/GFPGAN: GFPGAN Aims at
Developing Practical Algorithms for Real-world
Face Restoration.” GitHub,
github.com/TencentARC/GFPGAN.

14. Woolf, Max. “Stable Diffusion 2.0 and the
Importance of Negative Prompts for Good
Results.”Max Woolf’s Blog, 28 Nov. 2022,
minimaxir.com/2022/11/stable-diffusion-negativ
e-prompt.

15. Islam, Saiful, and Jean-Marc Pierson.
“Evaluating Energy Consumption in CDN
Servers.” Lecture Notes in Computer Science,
Springer Science+Business Media, 2012, pp.
64–78.
https://doi.org/10.1007/978-3-642-32606-6_6.

16. “Selenium.” Selenium, www.selenium.dev.
17. “BigQuery Enterprise Data Warehouse |

Google Cloud.” Google Cloud,
cloud.google.com/bigquery.

18. A Research-oriented Top Sites Ranking
Hardened Against Manipulation - Tranco.
tranco-list.eu.

19. Stability-Ai. “GitHub -
Stability-AI/Stablediffusion: High-Resolution
Image Synthesis With Latent Diffusion Models.”
GitHub,
github.com/Stability-AI/StableDiffusion.

20. Cusick, Bill. “Stable Diffusion 2.0 Release —
Stability AI.” Stability AI, Feb. 2023,
stability.ai/blog/stable-diffusion-v2-release.

21. “A100 GPU’s Offer Power, Performance, and
Efficient Scalability.” NVIDIA,
www.nvidia.com/en-us/data-center/a100.

22. “Energy Consumption for Data Distribution in
Content Delivery Networks.” IEEE Conference
Publication | IEEE Xplore, 1 May 2016,
ieeexplore.ieee.org/document/7511356.

23. Vishwanath, Arun, et. al. “Modeling Energy
Consumption in High-Capacity Routers and
Switches.” IEEE Journals & Magazine | IEEE
Xplore, 1 Aug. 2014,
ieeexplore.ieee.org/document/6848762.

24. Spetko, Matej, et al. “DGX-A100 Face to Face
DGX-2—Performance, Power and Thermal
Behavior Evaluation.” Energies, vol. 14, no. 2,

MDPI, Jan. 2021, p. 376.
https://doi.org/10.3390/en14020376.

25. “NVIDIA A40 for Visual Computing.” NVIDIA,
www.nvidia.com/en-us/data-center/a40.

26. LambdaLabsML. “GitHub -
LambdaLabsML/Lambda-diffusers.” GitHub,
github.com/LambdaLabsML/lambda-diffusers.

27. Oneflow Inc. “GitHub - Oneflow-Inc/Oneflow:
OneFlow Is a Deep Learning Framework
Designed to Be User-friendly, Scalable and
Efficient.” GitHub,
github.com/Oneflow-Inc/oneflow.

28. Automatic. “GitHub -
AUTOMATIC1111/Stable-diffusion-webui:
Stable Diffusion Web UI.” GitHub,
github.com/AUTOMATIC1111/stable-diffusion-
webui.

29. Stable Diffusion XL. “Stable Diffusion XL
Model - SDXL Beta - Stable Diffusion XL.”
Stable Diffusion XL, May 2023,
stablediffusionxl.com.

