
Accelerating Mobile Web Performance through
JavaScript Classification on the Browser

Sashank Silwal
Computer Science, NYUAD
sashank.silwal@nyu.edu

Advised by: Yasir Zaki

ABSTRACT
JavaScript is widely recognized as the primary programming
language for the web and is utilized by 97.9% of all web-
sites as a client-side programming language [13]. It plays
an indispensable role in facilitating dynamic interactivity
on websites, including running animations, making network
requests, and more. However, the use of JavaScript on mod-
ern mobile web pages has created a significant performance
bottleneck for low-end mobile phone users, particularly in
developing regions. The average page size has increased
from 1720 Kilobytes in 2016 to 3077 Kilobytes in 2021 [2],
with JavaScript contributing increasingly to the overall page
size (from 24% in 2016 to 27% in 2021) [2]. Compared to
other web resources of the same size, JavaScript is more
computationally expensive to process due to the need for
parsing, interpretation, and execution. This cost contributes
significantly to the growing complexity of modern mobile
pages, creating a critical performance bottleneck for low-
end smartphone devices, which ultimately results in reduced
user engagement. Lower-tier mobile devices with limited
RAM and CPU power struggle to process JavaScript code
efficiently, while slow internet speed can impede the faster
downloading of the JavaScript file over the network.
To address this issue, we propose an approach that gen-

erates lightweight versions of mobile web pages by directly
eliminating the use of unnecessary JavaScript by the browser.
Our solution involves the use of a supervised machine learn-
ing model that operates on the browser and offers insights
into each JavaScript script embedded in a web page. The
model is designed to enhance the web browsing experience

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 2, Spring 2023, Abu Dhabi, UAE
© 2023 New York University Abu Dhabi.

by predicting the class of each script, preserving essential
scripts, and blocking non-essential ones. Our research goals
include developing and training the machine learning model
to classify JavaScript code, caching the classifications for
later use, deploying the model in an open-source browser
such as DuckDuckGo, and comparing the results with simi-
lar existing solutions. By using an open-source browser like
DuckDuckGo, we can ensure that our solution is accessible
and transparent, while also taking advantage of the browser’s
advanced features and capabilities. Our proposed solution
aims to improve the performance and usability of mobile
web pages for low-end mobile devices and areas with slow
internet speeds.

KEYWORDS
SupervisedMachine Learning, Classification, JavaScript,Web
Page, User Experience
Reference Format:
Sashank Silwal. 2023. AcceleratingMobileWeb Performance through
JavaScript Classification on the Browser. InNYUAD Capstone Project
2 Reports, Spring 2023, Abu Dhabi, UAE. 9 pages.

1 INTRODUCTION
JavaScript (JS) is a popular programming language that is
widely used on the web to enable dynamic interactivity, such
as making network requests, running animations, and more.
However, the use of JS on modern mobile web pages can also
be a major contributor to slow page load times and a poor
browsing experience. This problem is particularly significant
in low andmiddle-income countries, where 87% of broadband
connections are made through mobile devices [9]. These
countries often rely on affordable, low-end smartphone de-
vices to access the web, which can struggle with the process-
ing power and memory required to load and execute heavy
JS scripts.

The current state of theWorldWideWeb (WWW) shows a
45% increase in JS usage on a median mobile page, with only
7% fewer JS kilobytes transferred to mobile pages compared
to desktop pages (475.1 KB for desktop and 439.9 KB for

Capstone Project 2, Spring 2023, Abu Dhabi, UAE Sashank Silwal

mobile) [3]. While the main purpose of JS on web pages is
to provide interactive content, it is not always essential to
the main page content or interactive functionality [6]. This
raises the question of how to reduce the impact of JS on web
page performance, particularly for low-end mobile devices
and slow internet connections.

This paper proposes a solution that produces lightweight
versions of mobile web pages by eliminating unnecessary
JS directly through the browser. Our approach builds on
an existing solution called SlimWeb, which is a JS classifi-
cation approach that lightens mobile web pages on the fly
using a browser plugin. However, we address the limitations
of SlimWeb by implementing the machine learning model
directly on the browser, rather than using a plugin. This
approach takes advantage of the greater resources available
on the browser, such as memory storage. We will be using
an open-source browser called DuckDuckGo, known for its
privacy features and built-in ad blocker [4], to implement
and test our solution. We will reuse the machine learning
model developed using 127,000 JS elements by scraping more
than 20,000 popular web pages for SlimWeb, which has a
median accuracy of 90% [5]. Our goal is to extract highly
predictive features from the code and use them to classify the
JS, improving the performance and usability of mobile web
pages for low-end devices and slow internet connections.
To achieve this, Falcon Browser includes a service that

periodically crawls popular web pages and classifies their
embedded JS using a supervised learning model into crit-
ical and non-critical elements. Upon starting the browser,
it requests the classification results with the service. The
browser is then responsible for preserving the critical JS
elements while blocking the non-critical ones, resulting in
lighter mobile pages. Falcon Browser is designed primarily
for low-end smartphones that are common among mobile
users in developing regions. This approach can improve page
load times, reduce bandwidth and energy consumption on
mobile devices, and extend battery life.

In summary, the contributions of this paper include:

• AnML-driven JS classifier that categorizes JS elements
with 90% accuracy.
• An easy to install solution that is integrated into an
open-source browser that benefits from the classifi-
cation by providing lighter versions of web pages for
mobile users.
• 30% reduction in page load times compared to the
original pages

2 MOTIVATION
The development of SlimWeb and Falcon Browser is premised
upon the recognition that not all JavaScript (JS) may be in-
tegral to the core functionality of a webpage. In this regard,

Table 1: Performance Comparison of Original and Op-
timized Versions of github.com

Metric Original Optimized
Number of JS requests 35 26
Size of JS resources (KB) 393.1 324
Speed Index (s) 5.2 4.8

the selection of github.com serves as an example for show-
casing the optimization of webpage performance through
the removal of non-critical JS elements, whilst maintaining
the primary content and interactive features of the page. Fal-
con Browser’s analytical capabilities demonstrate that the
github.com webpage encompasses 1 advertisement, 7 analyt-
ics, 6 content delivery network (CDN), 1 content, 4 hosting, 2
miscellaneous, 1 social, 6 tag manager, and 7 utility elements.
A performance analysis was conducted on two versions of
the github.com page: the original version and a JS-optimized
version. The latter was loaded by Falcon Browser, which
blocked analytics, advertising, and social elements whilst
preserving other JS elements.
Our analysis revealed that removing non-critical JS ele-

ments reduced the number of requests by approximately
26% (from 35 requests in the original page to 26 requests in
the optimized page). Despite these reductions, the main con-
tent and functional components of the page remained intact.
We confirmed this through visual evaluation. However, it is
worth noting that the removal of an ad element from the top
of the page did occur. Overall, our example highlights the
potential benefits of identifying and removing non-critical
JS from web pages to improve the user experience for mobile
users without sacrificing quality.

For further details, please refer to Table 1.

3 RELATEDWORK
An increasing interest in the research community to achieve
a solution to simplify the ever-increasing complexity of web
pages is seen with different approaches. One solution has
been to decrease the web page complexity caused by the pres-
ence of JS. For example, Opera Mini is a web browser that
uses the server to process JS and communicate the results to
the client browser. This process requires constant communi-
cation between the browser and the server [5], which can
lead to delays in the connection.

JSCleaner [6] is another approach to web and JS simplifica-
tion that examines the content and classifies it into different
buckets to transform webpages into simpler or "lighter" ver-
sions. In contrast to our approach of eliminating unnecessary
JS, JSCleaner simplifies the use of JS in existing pages by se-
lectively removing or replacing a portion of these scripts,
rather than eliminating them.

Accelerating Mobile Web Performance through JavaScript Classification on the Browser Capstone Project 2, Spring 2023, Abu Dhabi, UAE

SlimWeb is a solution that aims to speed up page loads and
improve the mobile browsing experience [5]. It uses a JS clas-
sification service and a browser plugin to block non-critical
JS elements based on labels received from the service. The JS
classification service crawls popular web pages to identify
the JS elements and uses a supervised learning classifier to
categorize them.
Wprof [14] is an in-browser tool that acts as a profiler to

provide an understanding of the key hindering effects behind
Page Load Time (PLT). PLT is the average amount of time it
takes for a page to show up on the screen. Wprof captures
the dependency graph for a given web page and identifies
delay bottlenecks. The study also found that synchronous JS
evaluation plays a significant role in PLT because it blocks
parsing.

In the industry, companies like Google and Facebook have
attempted to tackle the problem of growing web complex-
ity through Google AMP [8] and Instant Article [7]. AMP
redefines how pages should be written by providing web
developers with a framework to create their web pages. In-
stant Article is an HTML document that loads very quickly
on Facebook. A major difference between our approach and
these approaches is that we aim to simplify what already
exists on today’s web, rather than creating new web pages.
Due to the increasing complexity of JS and the burden it

puts on low-end phones to download, load, and process the
scripts, there has been significant interest in the research
community in finding ways to address this issue. The above-
mentioned works have a similar goal of decreasing the com-
plexity of web pages to improve the user experience, but the
methods applied are different from the one discussed in this
paper.

To handle the cost of JS, web developers utilize uglifiers [1]
to reduce the size of JS files before using them in their pages.
These uglifiers remove all unnecessary characters (including
white spaces, new lines, and comments) from these files
without changing functionality. However, no speedups are
expected at the processing level since the browser has to
interpret the entire JS.
In contrast, JS blocking extensions [8] can aid users in

reducing the amount of JS transferred to their browsers,
potentially leading to processing speedups. These blockers
rely on updating the blocking lists to prohibit a specific
category of JS, such as ads or trackers, with a main drawback
being their inability to predict if an "unknown" JS falls into
a target category. This is because the rules in their blocking
lists are generated by human annotators [11], which hinders
effective maintenance. For example, the most popular list
consists of around 60,000 rules [12] and is not generalized to
handle unseen examples.

Our approach aims to simplify existing web pages by elim-
inating unnecessary JS to improve the user experience. Un-
like Opera Mini, we do not require constant communication
between the browser and server. Unlike JSCleaner, we do
not selectively remove or replace a portion of JS, but rather
eliminate it entirely. Unlike SlimWeb, we do not use a classi-
fication service and browser plugin to block non-critical JS
elements. Unlike Wprof, we do not aim to identify delay bot-
tlenecks, but rather eliminate JS altogether. Unlike Google
AMP and Instant Article, we do not involve creating newweb
pages, but rather simplifying existing ones. Unlike uglifiers,
we do not merely reduce the size of JS files, but eliminate
them altogether to improve processing speed. And unlike
JS blocking extensions, we do not rely on human-generated
rules or lists to block specific categories of JS, but rather use
machine learning to identify and eliminate unnecessary JS.

4 METHODOLOGY
4.1 JavaScript Classification

Figure 1: Summary of the 4-layer Neural Network
from the SlimWeb Paper

In this study, we utilized the classification model devel-
oped by SlimWeb [5] to categorize JavaScript (JS) elements in
web pages. The SlimWeb model is a multi-class classification
approach that employs a neural network and has achieved a
precision-recall of 90% with a dataset of 127,000 JS elements,
as depicted in Figure 1. This neural network was trained on a
dataset of labeled JS elements, where each element belonged
to one of 12 known categories. The total number of neurons
in the input layer was set to be equal to the total number of
features, while the optimal number of neurons in the first
and second hidden layers were set to 350 and 50, respectively,
through hyper-parameter search. Performance evaluation
was done using recall, precision, and F1-score as metrics.

Falcon Browser, utilizes the SlimWeb classifier to catego-
rize JS elements in a web page and then label them as either
critical or non-critical. Non-critical elements include ads,
socials, marketing, and analytics, based on both user sur-
veys and quantitative evaluations presented in the SlimWeb
paper [5].

Capstone Project 2, Spring 2023, Abu Dhabi, UAE Sashank Silwal

4.2 Implementation of the ML model on
Browser

Algorithm 1 Classifying the JavaScript
1: Input: string script
2: Output: category
3: category, predictionProb←MLClass(script)
4: if predictionProb > 0.8 and category ∈ [ads, marketing,

socials, analytics] then
5: return category
6: else
7: return unassigned_category
8: end if

After the completion of training the model, we converted
it to the ONNX format, which is specifically designed to en-
sure compatibility with different frameworks and hardware
platforms. The ONNX format facilitates deployment of the
model to various environments, including the DuckDuckGo
browser, which is written in Java. In order to integrate the
model into the browser, we employed the ONNX Runtime
Java API. The ONNX Runtime is an inference engine opti-
mized for ONNX models, designed to be cross-platform and
cross-framework, and supports a wide range of program-
ming languages, including Java. The ONNX Runtime Java
API allows us to load the model into the browser and perform
real-time classification of JS elements on web pages.

However, this approach is not without its limitations. One
major drawback is the need for the client browser to down-
load the unknown JS file in order to classify and label it,
which can be time-consuming and negatively impact per-
formance. To address this issue, we implemented a caching
mechanism that stores the classification results for later use.
This means that a JS element only needs to be classified once
upon first request to the website, and the label will be known
in subsequent requests to the same JS, reducing the need for
repeated classification of the same scripts.

Additionally, to further reduce the number of JS elements
that require classification, we established a server-based so-
lution that updates the classifications on a regular basis and
shares the results with the client-side browser if the page is
encountered for the first time. This enables the browser to
cache the classification results and avoid the need to down-
load or classify the scripts itself, thereby enhancing perfor-
mance.

Our ultimate objective is to develop the most effective and
efficient solution for integrating the classification engine
into the browser, with the aim of improving the performance
and usability of mobile web pages on low-end devices and
in areas with slow internet speeds.

5 FALCON BROWSER DESIGN
The Falcon Browser aims to enhance the browsing experi-
ence on mobile devices by accelerating page loads, with two
primary components: a JavaScript classification service and
the in-browser JavaScript classification mechanism. The for-
mer employs a supervised learning classifier that categorizes
JS elements into one of nine pre-defined categories, including
advertising, analytic, social, marketing, video, customer suc-
cess, utility, hosting, and content, which are commonly used
and defined by experts in the web community. The first four
categories are non-critical, while the remaining categories
are critical to the page content or interactivity.
As demonstrated in the Figure 2 JS classification service

crawls popular web pages to identify JS elements, which
are then labelled and stored in a database. Periodic updates
are shared with users’ browsers, which are responsible for
classifying and blocking non-critical JS elements. To avoid
the intensive task of classifying every JavaScript on a mo-
bile device, Falcon Browser integrates a classifier service that
crawls the top 350 web pages on Tranco’s list and stores their
classifications in a database. At the beginning of each run,
Falcon Browser downloads this classification and saves it in
a cache. When there is an HTTPS request to a JavaScript file,
the cache is checked for an existing classification. If there is
a cache miss, the browser employs an internal pre-trained
machine learning model, which predicts the category and
compares its accuracy to a threshold (set at 0.8 for the test
case), as demonstrated in Algorithm 1. If the category is ads,
analytics, marketing, or socials, and the accuracy is higher
than the threshold, the script is blocked from executing. By
using this approach, Falcon Browser reduces the processing
load on mobile devices and enhances the browsing experi-
ence for users.

6 EVALUATION
This section presents an evaluation of Falcon Browser based
on objective metrics, with a focus on webpage loading speed,
data savings, and web compatibility. The evaluation em-
ployed a Xiaomi Redmi Go, a low-end mobile device with
a quad-core 1.4 GHz Cortex-A53 CPU and 1 GB RAM. To
facilitate the evaluation, the mobile device was connected
via USB to a Linux machine that utilized the WebPageTest
browser automation tool. This tool enabled automated web-
page loads, telemetry collection, and performance metrics
and network requests analysis.
The evaluation focused on two classic web performance

metrics, namely SpeedIndex and PageLoadTime. The SpeedIn-
dex is the average time at which visible parts of the page are
displayed, while PageLoadTime measures how long it takes
for a page to fully load, including all its resources such as
images, scripts, and stylesheets. Specifically, the evaluation

Accelerating Mobile Web Performance through JavaScript Classification on the Browser Capstone Project 2, Spring 2023, Abu Dhabi, UAE

Figure 2: Browser Architecture

employed Falcon Browser to load the Top 350 websites from
Tranco’s list, and each webpage was loaded three times to
obtain an average of the metrics [10].

To evaluate the efficacy of Falcon Browser, the study adopted
the threshold values of 0 and 0.8 proposed by the SlimWeb
paper. The threshold of 0.8 was found to provide optimal
results by preserving the visual integrity of most web pages
while still removing non-critical JavaScript code. By testing
these two thresholds, the study aimed to investigate whether
Falcon Browser’s JavaScript classification algorithm could
accurately identify and remove non-critical scripts without
compromising the visual content and functionality of web
pages.
The Tranco list was chosen for the evaluation as it is

generated by combining existing rankings to generate a more
reliable ranking. The list currently includes the lists from
four providers: Alexa, Cisco Umbrella, Majestic, and Farsight
(only for the default list). Through this evaluation, the study
aimed to assess Falcon Browser’s ability to deliver optimized
web performance and user experience on low-end mobile
devices.

6.1 Quantitative Results
The figures presented in this study shed light on the effective-
ness of Falcon Browser in blocking non-critical JavaScript
requests and reducing the size of the requested scripts. The

Figure 3: Distribution of Number of JS requests

Cumulative Distribution Functions (CDFs) in Figure 3 demon-
strate that, on average, Falcon Browser blocks 25% of the
total JavaScript requests per web page when a threshold of
0.8 is applied. When no threshold is imposed, Falcon Browser
is able to block up to 55% of non-critical JavaScript requests,
leading to a reduction of the original requests by 45%. This
significant reduction in the number of requests results in
lower data downloaded and higher bandwidth saved, con-
tributing to improved web browsing efficiency.

Furthermore, the box plot shown in Figure 4 further sup-
ports the effectiveness of Falcon Browser in reducing the
size of JavaScript requests. The median size of the original

Capstone Project 2, Spring 2023, Abu Dhabi, UAE Sashank Silwal

Table 2: Comparison of PLT and Speed Index median values on 3G network

PLT Speed Index
Network % Original Falcon Browser % Original Falcon Browser
3G 21.4 41.6 32.7 19.6 38.7 31.1

JavaScript requests was found to be 1180 KB, which was re-
duced by 23.7% to 900 KBwhen a threshold of 0.8 was applied.
When the threshold was removed, the size of the requested
scripts was reduced even further by 46.7% to 630 KB. These
findings highlight the potential impact of Falcon Browser in
improving web browsing experience and reducing the data
consumption for users.

It is worth noting that the reduction in the size of JavaScript
requests may not only contribute to improved web browsing
efficiency but also have significant implications for website
developers. With the increasing demand for faster and more
efficient web browsing, developers may need to optimize
their websites to reduce the number of non-critical JavaScript
requests and improve the overall performance of their web-
sites. This study provides valuable insights into the effective-
ness of Falcon Browser in reducing the size of JavaScript re-
quests and suggests that similar approaches could be adopted
bywebsite developers to optimize their websites and improve
the browsing experience for their users.

Figure 4: Comparison of Web Page Size Distribu-
tion (only due to JS) Requested with and without
Falcon Browser, with and without Threshold

The results of our experiments clearly demonstrate the
effectiveness of Falcon Browser in optimizing web pages and
improving user experience, as shown in Figures 6a and 6b.
By computing the delta between the optimized and original
pages, we can see that in the majority of cases, our browser
achieves savings in terms of SpeedIndex and PageLoadTime.
It is worth noting that the SpeedIndex metric is particu-

larly important in assessing user experience, as it captures
the time it takes for the page to become visually complete.
A shift to the right in the CDF indicates that more pages are
experiencing faster loading times, which is a clear indication
of the effectiveness of Falcon Browser. The fact that 70-80
Similarly, the improvement in PageLoadTime is a crucial

factor in determining user satisfaction, as it indicates the

time at which the browser signals that all content has been
loaded. As shown in Figure 6a, Falcon Browser achieves
significant improvements in this metric, with a clear shift to
the left in the CDF. This suggests that our optimizations are
effective in reducing the overall loading time of web pages.

Overall, these results provide strong evidence in support of
Falcon Browser as an effective tool for optimizing web pages
and improving user experience. By reducing the amount
of data downloaded and optimizing the loading of critical
content, our browser achieves significant savings in terms
of both bandwidth and time, making it a valuable tool for
users with slow or unreliable network connections.

7 DISCUSSION
7.1 Limitations
Despite the promising results shown by the Falcon Browser
in terms of reducing data consumption and improving page
load time, there are still some limitations and opportunities
for future research and improvements.
One of the limitations of the Falcon Browser is that it

is built on top of DuckDuckGo browser which is based on
Webkit and WebPage tests that require the chrome toolkit
api. As a result, the metrics used for testing the browser’s
performance were limited. In the future, there needs to be
an alternative approach to better run the evaluations that
can accurately capture all the relevant metrics.
Moreover, although the Falcon Browser is built on the

Slimweb paper, there is still room for further work to develop
a better model for accurate predictions. This model should
take into account the specific characteristics of different web
pages and networks, as well as potential changes in user
behavior over time.

In addition, there is an opportunity for further research to
explore the impact of the Falcon Browser on other aspects of
web browsing, such as user experience, security, and privacy.
For instance, future studies could investigate the effect of
Falcon Browser on page rendering speed, user engagement,
and user satisfaction. Furthermore, there is an opportunity
to explore the potential of the browser to reduce the risk of
malicious attacks, such as phishing and malware, and to pro-
tect user privacy by blocking trackers and other unwanted
scripts.

Finally, there is a need for broader adoption of the Falcon
Browser and similar lightweight browsing tools. As more

Accelerating Mobile Web Performance through JavaScript Classification on the Browser Capstone Project 2, Spring 2023, Abu Dhabi, UAE

(a) Page Load Time (s) (b) Speed Index (s)

Figure 5: Falcon Browser configuration (0.8) : Quantitative results

(a) Delta Page Load Time (s) (b) Delta Speed Index (s)

Figure 6

users adopt these tools, there is a potential to create a virtu-
ous cycle where website developers optimize their content
to be more efficient, leading to faster and more reliable web
browsing for everyone.

7.2 Bridging the Digital Divide
The potential impact of Falcon Browser on users in develop-
ing countries cannot be overstated. As more people in these
regions gain access to the internet, the need for efficient and
affordable browsing tools becomes increasingly important.
With its ability to simplify web pages and block unnecessary
scripts, Falcon Browser has the potential to provide a faster
and more reliable browsing experience for users with limited
resources.

Furthermore, the privacy-centric design of Falcon Browser,
built on top of DuckDuckGo, can help protect users in de-
veloping countries who may be more vulnerable to online
privacy violations. In many of these countries, governments
and other entities often monitor online activity and limit
access to certain websites or services. By using a browser

that prioritizes privacy, users can browse the web with more
confidence and security.

In addition to its potential benefits for users in developing
countries, Falcon Browser can also contribute to a more
sustainable web. With its ability to reduce data consumption
and improve page load times, Falcon Browser can help reduce
the carbon footprint associated with web browsing. This is
particularly relevant given the increasing concern about the
environmental impact of technology and the need for more
sustainable practices in all areas of life.

7.3 Further Improvements
Although Falcon Browser presents a promising solution to
improving the web browsing experience for users in devel-
oping countries, there is still much work to be done in order
to refine and enhance its technology. One of the key first
steps to take is to conduct user testing in order to better
understand the user experience and their overall impression
of the browser. This can help identify areas of improvement
and highlight specific features that users find most useful or

Capstone Project 2, Spring 2023, Abu Dhabi, UAE Sashank Silwal

frustrating. Additionally, a server should be set up to receive
feedback from users in case of website breakage. This can
help ensure that users have a seamless and reliable browsing
experience.
Furthermore, there is a need for additional research to

investigate the performance of Falcon Browser on differ-
ent types of networks and devices. Although the current
study focused on 3G networks, it is important to evaluate
the browser’s performance on LTE, 4G, and other types of
networks. Similarly, the study used a limited number of de-
vices, and there is a need to test the browser on a wider range
of devices to assess its performance on different hardware
configurations. By testing the browser on a wider range of
devices, we can better understand its performance and iden-
tify any potential compatibility issues that may need to be
addressed.

Another area for future research is to evaluate the impact
of Falcon Browser on web content creators and website de-
velopers. With the potential for Falcon Browser to reduce
data consumption and improve page load time, there may
be an opportunity for developers to optimize their websites
for more efficient performance. However, this may require
additional development resources and testing to ensure that
websites remain functional and user-friendly for all users.
Therefore, it is crucial to investigate the impact of Falcon
Browser on website development and ensure that its use
does not negatively affect the quality of the web content.

Finally, it is important to address the broader issue of the
digital divide and unequal distribution of access to technol-
ogy and the internet. While Falcon Browser has the potential
to improve the browsing experience for users in developing
countries, there is a need for greater investment in improv-
ing infrastructure and reducing the cost of mobile devices
and data plans. This will help to ensure that all users, regard-
less of their location or economic status, have equal access
to technology and the internet. Without addressing these
systemic issues, the potential benefits of Falcon Browser
and similar technologies may be limited in their ability to
bridge the digital divide and improve the lives of people in
developing countries.

8 CONCLUSION
This study proposes a solution to address the challenges
faced by users in low-resource settings who rely on low-end
mobile devices and slow internet connections. The study in-
troduces a machine learning-driven browser that is designed
to automatically create lightweight versions of web pages
by eliminating non-critical JavaScript. Drawing from pre-
vious research on SlimWeb, the proposed browser utilizes
a supervised machine learning model to classify JavaScript
elements on a web page and block or preserve them based

on predetermined metrics. The goal of this approach is to en-
hance the browsing experience of users who face limitations
in terms of device capabilities and network infrastructure.
This study showcases the potential of machine learning-

driven solutions to improve the performance of mobile web
pages and enhance the user experience for individuals with
limited resources. By reducing the amount of data consumed
and improving page loading times, the proposed browser
can provide a more efficient browsing experience for users in
low-resource settings. This approach represents a significant
step towards bridging the digital divide and providing more
equitable access to the internet.

Moreover, the study highlights the importance of further
research in this area to explore the broader potential of ma-
chine learning-driven approaches in addressing the chal-
lenges faced by users in low-resource settings. There is a
need to investigate the impact of such solutions on user en-
gagement, satisfaction, and security, as well as the potential
implications for website developers and content creators. Ad-
ditionally, further research is needed to test the performance
of such solutions on different types of networks and devices
to ensure that they are scalable and adaptable to different
settings.

REFERENCES
[1] [n.d.]. UglifyJS. https://lisperator.net/uglifyjs/
[2] 2022. The Growth of Web Page Size - KeyCDN Support.

https://www.keycdn.com/support/the-growth-of-web-page-size.
[3] 2022. State of JavaScript. https://httparchive.org/reports/state-of-

javascript
[4] 2023. Home. https://duckduckgo.com/app
[5] Moumena Chaqfeh, Muhammad Haseeb, Waleed Hashmi, Patrick In-

shuti, Manesha Ramesh, Matteo Varvello, Fareed Zaffar, Lakshmi Sub-
ramanian, and Yasir Zaki. 2021. To Block or Not to Block: Accelerat-
ing Mobile Web Pages On-The-Fly Through JavaScript Classification.
https://doi.org/10.48550/ARXIV.2106.13764

[6] Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian.
2020. JSCleaner: De-Cluttering Mobile Webpages Through JavaScript
Cleanup. In Proceedings of The Web Conference 2020. Association for
Computing Machinery, New York, NY, USA, 763–773. https://doi.org/
10.1145/3366423.3380157

[7] Facebook. 2015. Instant articles. https://www.facebook.com/formedia/
tools/instant-articles

[8] Google. 2019. AMP on google | google developers. https://developers.
google.com/amp

[9] GSMA. 2021. https://www.gsma.com/r/wp-content/uploads/2021/09/
The-State-of-Mobile-Internet-Connectivity-Report-2021.pdf

[10] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczynski, and Wouter Joosen. 2019. Tranco: A Research-
Oriented Top Sites Ranking Hardened Against Manipulation. In Pro-
ceedings 2019 Network and Distributed System Security Symposium.
Internet Society. https://doi.org/10.14722/ndss.2019.23386

[11] Alexander Sjösten, Peter Snyder, Antonio Pastor, Panagiotis Pa-
padopoulos, and Benjamin Livshits. 2020. Filter list generation for
underserved regions. https://doi.org/10.1145/3366423.3380239

[12] Antoine Vastel, Peter Snyder, and Benjamin Livshits. 2018. Who Filters
the Filters: Understanding the Growth, Usefulness and Efficiency of

https://lisperator.net/uglifyjs/
https://httparchive.org/reports/state-of-javascript
https://httparchive.org/reports/state-of-javascript
https://duckduckgo.com/app
https://doi.org/10.48550/ARXIV.2106.13764
https://doi.org/10.1145/3366423.3380157
https://doi.org/10.1145/3366423.3380157
https://www.facebook.com/formedia/tools/instant-articles
https://www.facebook.com/formedia/tools/instant-articles
https://developers.google.com/amp
https://developers.google.com/amp
https://www.gsma.com/r/wp-content/uploads/2021/09/The-State-of-Mobile-Internet-Connectivity-Report-2021.pdf
https://www.gsma.com/r/wp-content/uploads/2021/09/The-State-of-Mobile-Internet-Connectivity-Report-2021.pdf
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/3366423.3380239

Accelerating Mobile Web Performance through JavaScript Classification on the Browser Capstone Project 2, Spring 2023, Abu Dhabi, UAE

Crowdsourced Ad Blocking. arXiv:1810.09160 http://arxiv.org/abs/
1810.09160

[13] W3Techs. [n.d.]. Usage statistics of JavaScript as client-side program-
ming language onwebsites. https://w3techs.com/technologies/details/
cp-javascript

[14] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2013. Demystifying Page Load Performance
with WProf. In 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). USENIX Association, Lombard, IL, 473–
485. https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/wang_xiao

http://arxiv.org/abs/1810.09160
http://arxiv.org/abs/1810.09160
https://w3techs.com/technologies/details/cp-javascript
https://w3techs.com/technologies/details/cp-javascript
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao

	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	4 Methodology
	4.1 JavaScript Classification
	4.2 Implementation of the ML model on Browser

	5 Falcon Browser Design
	6 Evaluation
	6.1 Quantitative Results

	7 Discussion
	7.1 Limitations
	7.2 Bridging the Digital Divide
	7.3 Further Improvements

	8 Conclusion
	References

