
An Empirical Comparison of Code Similarity
Algorithms
Jahnae Miller

Computer Science, NYUAD
jahnae@nyu.edu

Advised by: Yasir Zaki, Moumena Chaqfeh

ABSTRACT
As the usage of JavaScript libraries becomes more prevalent,
so does the adoption of bad and careless practices, such as
including multiple versions of the same library within the
same document [16]. These bad practices negatively impact
the page load times (PLTs) of the web pages. Thus, an in-
tuitive way of reducing page load times is removing these
duplicate scripts.

There are four main categories of duplicate detection tech-
niques: metric-based techniques, token sequence-based tech-
niques, tree-based techniques and PDG-based techniques.
However, PDG-based and metric-based techniques have al-
ready been proven to be costly and not very accurate, respec-
tively. Thus, suitable candidate algorithms must be found
within the realm of tree-based and token-sequence based
techniques.
In this paper, three algorithms are explored: two token-

sequence based algorithms and one tree-based algorithm.
These algorithms are compared and evaluated to find the best
algorithm for use in a light-weight tool meant to help reduce
page load times by cutting out unnecessary JavaScript.

KEYWORDS
clone detection, web optimization, javascript, similarity com-
parison, redundant code

Reference Format:
Jahnae Miller. 2020. An Empirical Comparison of Code Similarity
Algorithms. In NYUAD Capstone Project 2 Reports, Spring 2020, Abu
Dhabi, UAE. 8 pages.

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 2, Spring 2020, Abu Dhabi, UAE
© 2020 New York University Abu Dhabi.

1 INTRODUCTION
The web has become one the one of the major platforms for
software applications [20], leading to the meteoric rise of
JavaScript’s popularity as a programming language. JavaScript
is the most widely used language for client-side applications,
and it has even made its way to the server-side [9]. To compli-
ment its popularity, a massive number of JavaScript libraries
and frameworks have been developed to perform a multi-
tude of tasks and ease the burden of web development. In
fact, 86.6% of the Alexa Top 75k websites used at least one
well-known JavaScript library [16]. However, despite their
usefulness, these libraries and frameworks contribute heavily
to "web bloat".

"Web bloat" describes the trend in websites to increase in
size and complexity over time [8]. These increases in size
and complexity have a profoundly negative impact on the
PLTs (Page Load Times), a key performance metric of web-
sites. While network conditions and download speeds play
a role in PLTs, a major part of the increase in PLTs comes
from the evaluation of JavaScript and its blocking of HTML
(HyperText Markup Language) parsing. Both JavaScript and
HTML affect the DOM (Document Object Model), and when
modifying shared resources, maintaining the correct order
of execution is critical. To ensure the correct order of exe-
cution, JavaScript evaluation blocks HTML parsing, but this
slows down the rendering of the page, thus increasing page
load times. The speed of JavaScript evaluation depends on
factors, such as CPU speed and memory, that are not easily
or cheaply modified. Accordingly, special techniques must
be introduced to reduce the page load times, especially in
developing regions where page load times are cripplingly
slow and can range from tens of seconds to a few minutes
[23].

One of the obvious solutions is simply disabling or remov-
ing the JavaScript, especially the massive libraries that take
much longer to download and parse, but JavaScript provides
the bulk of functionality on the web pages. For example, the
most widely used library of the Alexa Top 75k websites is
jQuery [10]. jQuery simplifies and makes it much easier to



implement and use the most widely used JavaScript features,
such as HTML DOM Tree traversal and manipulation, and
event handling. If a library like jQuery is removed, most of
the page’s functionality will be removed alongside it. Even
further, some web pages and their content are generated
entirely by JavaScript. Over 75.9% of the home pages of 6,085
popular websites use JavaScript dynamic generation tech-
niques [22].
Not all the JavaScript that is included in web pages is

strictly necessary, however. Some of these JavaScript libraries,
often loaded from external domains and referred to as third-
party libraries, are included in web pages to not simply make
the use of JavaScript features easier and more accessible like
jQuery does but to add features, such as advertising, tracking,
social media, analytics and more. 43% of 4,517 sites include
JavaScript files from at least three external domains [22].
Most of these modules do not add any functionality that
actively benefits the users of the websites, and tracking may
even be considered harmful.

Furthermore, the prevalence and wide-spread use of these
libraries by web developers have led to the adoption of care-
less practices, such as including multiple versions, or even
the same version, of a library in the same document [16].
Having multiple copies of the same version of a library does
not add any additional functionality to a website. Instead, it
can lead to security risks and non-deterministic behaviours
because asynchronous loading makes it unclear which copy
of the library will be used [16].
An intuitive way of speeding up PLTs is identifying and

removing the duplicates of the JavaScript libraries. Exact
duplicates, which can be assumed to be copies of the same
version of the library or script, can be removed immediately.
However, treating different versions of the library will re-
quire another solution. A website might include an older
version of a library because it uses features which are re-
moved from or not supported by newer versions of the library.
However, it may also be the case that the other version is
still present because of a development oversight. To this end,
near duplicates should also be flagged and identified, so that
they can be reviewed.

There exist a multitude of algorithms to identify similari-
ties between documents. However, different algorithms will
perform differently based on the type of document given
and the parameters used to tune the algorithms. In this
case, the algorithms will be applied to JavaScript source files.
This paper explores three similarity detection algorithms: k-
shingling, winnowing and abstract tree fingerprinting. Even
further, this paper evaluates and compares their performance
based on four metrics: run-time, accuracy, CPU usage and
memory usage. Where possible, these metrics are also com-
pared against a baseline: the Stanford MOSS (Measure of
Software Similarity), a tool used for plagiarism detection.

These comparisons are done in hopes of finding the best
algorithm for use in a light-weight tool meant to help speed
up PLTs by removing the unnecessary JavaScript that wastes
CPU resources and blocks HTML rendering.

2 BACKGROUND AND RELATEDWORK
First and foremost, Schleimer et al. posit that a duplicate
detection algorithm should possess three main properties:
white-space insensitivity, noise suppression and position
independence. To ensure whitespace insensitivity, matches
should not be affected by whitespace, punctuation, capital-
ization, etc. These can be easily treated by going over the
data and removing the whitespace and punctuation, and then
transforming all the text to either uppercase or lowercase.
When matching software text, it is also desirable to remove
sensitivity to variable names. For noise suppression, matches
must be large enough to indicate duplication, and that the
word is not a common word or idiom. Finally, to ensure posi-
tion independence, changing the order of the contents of the
document should not affect the measure of similarity. Also,
removing part of the document should not affect the matches
in the parts that remain, and adding to the document should
not affect the matches in the original portion [19].
There exist four main categories of clone detection tech-

niques, all possessing all or some of these properties: metrics-
based techniques, token sequence based techniques, tree-
based techniques and program dependency graph (PDG)
based techniques [2].

2.1 Metric-based techniques
Merlo et al. compute different metrics for chunks of code and
compare the metric vectors instead of comparing the code
directly [12]. The metrics typically chosen are: the number
of functions called, the ratio of input/output values to the
number of functions called, the number of linearly indepen-
dent paths through the program’s source code, a modified
function point metric, and a modified information flow qual-
ity metric. Distance, the Euclidean distance, for example,
within a certain threshold between these vectors can hint
at similar code. For web pages, in particular, one suggested
metric is the number of the number of occurrences of each
tag on the page [5]. For JavaScript files, programmer-defined
functions can be checked for possible cloning by first check-
ing the identifier used as their function names for equality,
and then comparing metrics, such as the number of lines
of code, number of effective lines of code (excluding blank
lines and comments), and the number of commented lines
of code [15]. Metric based typically methods perform poorly
because of their sensitivity to minor edits, and, nowadays,
very few programs use pure metric based methods [3].

2



2.2 Token sequence-based techniques
Token based matching is a historical approach to dealing
with source code plagiarism detection. Source code is to-
kenized and then supplied to string matching algorithms.
A fingerprint selection strategy can be used to lessen the
number of tokens that are kept and compared. JPlag [18],
a web-based code plagiarism detection tool, uses an algo-
rithm based on the Greedy String Tiling algorithm. In the
Greedy String Tiling algorithm, the two texts are first bro-
ken up into a sequence of tokens where the tokens are taken
from a set of "significant keywords", such as keywords and
built-in functions. A tile is a permanent and one-to-one as-
sociation between a substring in one set with a matching
substring in the other set. When a tile is formed, the sub-
strings are marked and cannot be used in any other matches.
The matches are assumed to be as long as possible, and a
minimum match length can be used to set a threshold which
matches must be longer than to be counted. The Greedy
String Tiling has a worst case complexity of 𝑂 (𝑛3) [21].

2.3 Tree-based techniques
Tree-based methods aim to exploit the syntactic properties
of programs. By only exploring the syntactic properties, this
method is not affected by typical obfuscation methods, such
as renaming variables. Tree-based methods consider the syn-
tax tree obtained from parsing the source code. Abstracted
syntax trees provide better recall. The edit distance of the
trees can be computed, but hashing the trees and comparing
the hashes is much more scalable. The syntax trees are typi-
cally hashed and put into buckets based on their hashes. To
avoid doing a large number of comparisons, 𝑂 ((𝑛𝑚)2) for
comparing 𝑛𝑚 sub-trees of𝑚 projects of size 𝑛, only hashes
within the same buckets are compared [3]. A threshold can
be specified and sub-trees with weights below that threshold
can either be ignored completely [1] or, in solutions such as
CloneDR, hashed to the same value [4]. However, hashing
all sub-trees below the threshold to the same value leads to
an increased number of false-positives.

2.4 PDG-based techniques
A Program Dependency Graph (PDG) can be used to repre-
sent the control and data flow dependencies within a func-
tion. Statements and control predicates are represented by
the nodes in the graph. The edges incident to a node repre-
sent the data values that the nodes operations depend on
and the control conditions the execution of the operations is
dependent on [7]. Isomorphic subgraphs may be identified as
clones. However, this is very costly, as finding isomorphisms
between graphs is a NP-complete problem. Krinke [2, 14]
uses approximate solutions to find these isomorphic graphs
because of the computational complexity.

3 METHODOLOGY
Since finding isomorphic subgraphs is costly, and the ideal
duplicate detection algorithm should be fast and lightweight,
as well as, accurate, PDG-based techniques were not con-
sidered. Additionally, because of their known issues with
accuracy, metric based techniques were not considered either.
Two token-based methods were considered: k-shingling and
winnowing, and the final duplicate detection algorithm con-
sidered was tree-based: abstract syntax tree fingerprinting.
For both of the token-based algorithms, extra steps were

taken and the JavaScript files were first pre-processed to en-
sure whitespace insensitivity. In both cases, the whitespace
and punctuation were removed and the data was all trans-
formed to lower case. All identifiers were replaced with the
letter ’X’ and all string literals were replaced with the letter
’Y’.

3.1 K-Shingling
K-Shingling is a token-based document clone detection al-
gorithm. It is a method of transforming documents into sets
of tokens upon which set similarity comparisons can be
performed. Firstly, the documents are divided into k-sized
shingles (or k-grams). A shingle is a contiguous sub-sequence
of characters or words in a document. The size of k should be
chosen to reduce the odds of any given shingle appearing in
a document [17]. A size of 3 was found to perform the best,
in terms of both accuracy and run-time. Picking shingles of
size k also ensures noise suppression, as no tokens less than
size k will be considered.
After the shingles are formed, their SHA-1 hashes are

computed. The choice of hash function can be changed to
MD5 or a faster algorithm to speed up the comparisons, but
it was found that SHA-1 performed just fine. Since we are
dealing with sets, any repeated hash values are immediately
discarded. This reduces the number of comparisons required
to calculate the set similarity greatly, especially considering
the repetitive vocabulary of source code. The Jaccard similar-
ity index is used to represent the similarity between the sets
of hashes obtained from each document. The Jaccard similar-
ity index is given by: 𝐴∩𝐵

𝐴∪𝐵 . It is the ratio of the intersection
of the sets to their union.
Intuitively, k-shingling scales much better than the ab-

stract syntax tree fingerprinting algorithm because of its
linear complexity in time and space. More importantly, this
algorithm works on more than just source code. For the Ab-
stract Syntax Tree representation to work, the document
must be complete and syntactically correct, as well as, in a
programming language that the parser producing the syntax
tree understands [13].

3



3.2 Winnowing
Winnowing can be thought of as a relative of the k-shingling
algorithm, but it is more robust. Once more, the documents
are divided into sets of k-grams and the k-grams are hashed.
Winnowing has extra steps to reduce the number of compar-
isons performed to calculate the similarity of the sets. The
winnowing algorithm selects a specific subset of the total
hashes of all the k-grams to represent the document. This
subset is referred to as the "fingerprints" of the document.
To select the fingerprints, the winnowing algorithm em-

ploys a sliding window. In each window, the minimum hash
value is chosen. The minimum is chosen in each window to
keep the number of fingerprints chosen minimal. Since the
window is a sliding window, the minimum in a window is
likely to still be the minimum in adjacent windows, since
the chance that a random number, 𝑤 , is smaller than the
minimum of a set of 𝑥 random numbers is low [19].
Once the fingerprints of the document are chosen, they

can be compared to the fingerprints of another document by
once more using the Jaccard similarity index.
On the first run of the algorithm, winnowing will run

slower than the simple k-shingling algorithm as the docu-
ment is first hashed, then the sliding window is employed
to pick the fingerprints. However, for repeated comparisons,
given the fingerprints are stored somewhere, it will be faster,
since there are typically much less fingerprints than there
are shingles. It will also be faster than the abstract syntax
tree fingerprinting considering the cost of traversing all of
the sub-trees that will be found in the AST.

3.3 Abstract Syntax Tree Fingerprinting
Abstract syntax tree fingerprinting is a tree-based clone de-
tection algorithm. Instead of preparing the document by
getting rid of whitespace, punctuation, etc., the source code
must be parsed to produce the abstract syntax tree. An ab-
stract syntax tree represents the syntactic structure of a pro-
gram, so it is intrinsically whitespace insensitive. It is also
position independent as it looks at the syntactical structure
of portions of the code, without regard to their location in
the document.

After the abstract syntax tree is produced, the trees must
be compared. Instead of taking the edit distance between the
two trees, the sub-branches are instead hashed. Any branch
with less than 5 nodes is ignored. The hash calculated is
actually the hash of the concatenation of the node-type hash
and the hash of the node-count vector. The node-type hash
is simply the hash of the string representing the node-type,
whether that is a "variable" node, "block statement" node,
etc. The node count vector is the count of the types of nodes
in the sub-tree. This set of hashes is saved as the set of

fingerprints of the abstract syntax tree. These fingerprints
are also compared using the Jaccard similarity index.
The abstract syntax tree will fundamentally run slower

than the other algorithms explored because of the cost of
traversing and hashing all of the sub-trees above the thresh-
old. Constructing the abstract syntax tree is also much more
expensive than constructing the k-shingles and k-words.
While it may be more expensive, since the abstract syntax
tree is a structural representation, it should be less sensitive
to changes, such as reordering the sequence of statements.
While not as efficient, abstract syntax tree fingerprint-

ing has more applications than the other methods. Since
most refactoring tools are based on abstract syntax trees,
direct clone removal is much easier when dealing with the
abstract syntax tree representation. So, instead of completely
removing duplicates files, the duplicate branches within the
abstract syntax tree of the JavaScript file can be removed
instead, and the code can be reconstructed without the du-
plicate branches.
As mentioned before, abstract syntax tree fingerprinting

has one fatal flaw. Unlike the token-based techniques, which
will work on any document in any language, abstract syntax
tree fingerprinting will only work on languages for which
the parser that is being used can understand. In this case,
Esprima [6], a JavaScript parsing library was used to produce
the abstract syntax trees. However, Esprima can only parse
pure JavaScript, and it only has experimental support for JSX
[11], a very popular syntax extension to JavaScript. Thus,
Esprima could not parse all the files provided to it.

4 EVALUATION
This section details the results of exploring the different
duplication detection algorithms. The three algorithms, k-
shingling, winnowing and abstract syntax tree fingerprinting,
were run on approximately 3,400 scripts from 100 websites.
The websites were taken from the Alexa Top 10,000 inter-
net sites. A man-in-the-middle proxy was used to intercept
HTTP requests and save the files to a server. The Stanford
MOSS was selected to be used as the baseline measure for
accuracy and timing.

4.1 Stanford MOSS
The Stanford MOSS (Measure of Software Similarity), devel-
oped in 1994, is a web-based software system that is used to
prevent plagiarism, typically in programming classes, by de-
tecting the similarity of software programs. MOSS is specifi-
cally designed for software programs, and is compatible with
a variety of languages, such as C++, Python, JavaScript, etc.
MOSS works by using a more sophisticated form of the win-
nowing algorithm called "robust winnowing". In the typical

4



< 10 scripts 10 - 20 scripts 20 - 30 scripts 30 - 40 scripts 40 - 50 scripts > 50 scripts
Scripts

0

20

40

60

80

100

Ti
m

e 
Ta

ke
n 

(in
 m

s)

Average Time Taken For Processing
moss
ast
shingles
winnow

Figure 1: Bar-chart Comparing Algorithm Speeds

winnowing algorithm, the minimum is selected in each win-
dow, and if there is a tie, the right-most minimum is selected.
In "robust winnowing", ties are broken by selecting the same
hash as the window one position to the left, if possible. If it
is not possible, the right-most minimal hash is selected [19].
MOSS is highly accurate, but, while the details of the imple-
mentation of winnowing algorithm are public, the tuning
parameters are kept secret. Thus, MOSS’s results are hard
to reproduce. On the other hand, thanks to its availability
as a free to use software and its reputation of being very
accurate, MOSS is an excellent resource to test the accuracy
of the proposed duplicate detection algorithms against as a
baseline measure.

In response to a query, containing the files to be analyzed,
sent by a user, the Stanford MOSS produces HTML pages
where pairs of programs with similar code are listed. On
these HTML pages, the number of lines of code in common
between the pairs of files is reported, alongside the relative
percentage of each file that the lines in common make up. To
match the format of the MOSS scores, the duplicate detection
algorithms were modified to not only give the similarity co-
efficient – they also provide the percentage of each file that
the shingles and fingerprints in common make up. Code to
record the time taken from the submission of the scripts until
the final server response containing the results was injected
into the MOSS submission script provided.

4.2 Run-time
Fig. 1 illustrates the average time taken by each algorithm
to process and find the duplicates. The run-time was deter-
mined on an Intel dual-core processor architecture (2.7GHz)
with 8 GB RAM running macOS Mojave. Once more than 20
scripts are being compared, all of the explored algorithms
run faster than MOSS. This is because MOSS is an online ser-
vice, so the Javacript files being compared must be uploaded
to the server, and the user has to wait for a response. On the
other hand, k-shingling, winnowing and abstract syntax tree
fingerprinting were run on our local machine. For websites
with over 50 scripts, MOSS took 100 ms, almost double the
time that the second slowest algorithm took.
As expected, the abstract syntax tree fingerprinting had

the worst run-time of the offline duplicate detection algo-
rithms, with winnowing following after it, and shingling
being the fastest. Winnowing is slower than shingling be-
cause, while shingling only hashes the tokens and compares
the complete set, the winnowing algorithm goes over the
token hashes and selects the fingerprints of the document
before comparing the fingerprints.

4.3 Accuracy
As mentioned earlier, since the MOSS reports two separate
scores and not just one similarity index, the duplicate de-
tection algorithms also provide the percentage of each file
that the shingles and fingerprints in common make up. Fig.2

5



0 20 40 60 80 100
Absolute Error Margin

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Shingles
Winnow
AST

Figure 2: CDFs of Absolute Margin of Error

reports cumulative distribution function of the absolute mar-
gin of error of each algorithm when compared to MOSS’s
scores. The absolute margin of error is the absolute value of
the algorithm’s scores subtracted from MOSS’s scores.
Winnowing has best accuracy – the median absolute er-

ror margin is about 5%. AST fingerprinting has the worst
accuracy with a median of about 10%. Most of the difference
in accuracy most likely stems from differences in the way
MOSS prepares the data. Winnowing was expected to have
the best performance because it is closest to the algorithm
tht MOSS uses. However, exact replication of MOSS’s per-
formance is impossible, unless the algorithms used are the
same with the same document preparation steps and tuning
parameters, and MOSS’s document preparation steps and
tuning parameters are kept private. Shingling performed
worse than winnowing, with a median of about 10%, but
since it is faster, it might be worth sacrificing some of the
accuracy for speed.
Abstract syntax tree fingerprinting has the worst scores

because MOSS does not only check for structure and syntax,
it also maintains some level of semantic information, such
as language-specific keywords. From further examination
of the tested JavaScript files, there are lines of code that are
broken down into equal abstract syntax trees, but they are
not MOSS matches. As hypothesized, the abstract syntax
tree method does report many more false-positives than any
other method.

One thing to note about the accuracy scores reported here
is that the percentages between MOSS and the algorithms
also differ because MOSS does not work with sets like the
algorithms do. If a line shows up twice in a JavaScript files,
MOSS reports it as a duplicate twice, maintaining the exact
number of lines that are in the original document. If a shin-
gle or word or sub-tree hash appears more than once, any

occurrence after the first is discarded, leading to the over-
all document to be reduced in size, as the sets only contain
unique hashes. Naturally, this leads to discrepancies in the
percentage scores. However, the MOSS scores can still serve
as a good guideline of general correctness.

4.4 CPU Usage

Figure 3: Bar-chart Comparing CPU Usage

CPU usage, charted in Fig. 3 is another important met-
ric, especially if one of these algorithms is to be used in a
tool whose job is simplifying JavaScript and HTML pages to
speed up their load times. As expected from both the back-
ground research and the run-time graphs, abstract syntax
tree sub-tree traversal and hashing is much more CPU inten-
sive than just hashing a linear sliding window of tokens. The
average CPU usage for abstract syntax tree fingerprinting is
about 10% higher than it is for shingling. Winnowing, while
working off the same principle of a linear sliding window of
tokens, also does more computations by virtue of picking the
minimal hash in each window after computing all the hashes
of the tokens of the document. The average CPU usage of
winnowing is only about 2% higher than that of shingling,
but the maximum CPU usage is about 10% higher than the
shingling algorithm’s maximum CPU usage.
The CPU utilization could not be compared to MOSS’s

because MOSS runs on a private web server, so it was not
possible to obtain this metric.

4.5 Memory Usage
Fig. 4 which charts the memory usage of all three algorithms
reports some interesting and unexpected behaviour. Unlike
in all the other graphs, the abstract syntax tree fingerprinting
is not the worst performing algorithm. The high memory
usage for winnowing may be due to keeping a large number
of shingles in memory while picking the fingerprints. How-
ever, if one only examines the average memory usage, it is

6



Figure 4: Bar-chart Comparing Memory Usage

equal to that of the abstract syntax tree’s average memory
usage. This may imply that the maximum memory usage
reported for the winnowing algorithm may be an outlier. All
of the algorithms only use about 1.0% of RAM on average,
which means they are comparably light-weight and not very
memory intensive.

The memory utilization could not be compared to MOSS’s
because MOSS runs on a private web server, so it was not
possible to obtain this metric.

5 CONCLUSION
In this paper, three algorithms for document similarity de-
tection were examined and compared using a dataset of 100
websites and about 3,400 scripts. These algorithms are k-
shingling, winnowing and abstract tree fingerprinting. In k-
shingling, the document is broken up into tokens, then those
tokens are hashed and compared. In winnowing, instead of
comparing all of the token hashes, a sliding window is used
to select a set of hashes to represent the whole document as
its fingerprints. Finally, abstract syntax tree fingerprinting
considers the hashes of the abstract syntax tree of the source
code. These algorithms were evaluated in four categories:
run-time, accuracy, CPU usage and memory usage.

Overall, for general use, a clear winner cannot be decided.
These algorithms each have their own strengths and weak-
nesses. However, if the algorithm is meant to be incorpo-
rated in any tools that want to remain light-weight and fast,
abstract syntax tree fingerprinting is not a viable option
because of its run-time and CPU usage. While shingling is
faster and uses less memory than winnowing, there exists a
trade-off as it is less accurate. The use of either shingling or
winnowing is wholly dependent on whether a faster or more
accurate solution is desired. Since winnowing typically takes
double the time that shingling does, this is a very important
consideration to make.

While abstract syntax trees may not be the best route
to take when looking for fast and non-intensive duplicate
detection, there are other uses. During this research, the idea
of using abstract syntax trees to find and track dependencies
between functions in JavaScript files was explored.

REFERENCES
[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone

detection using abstract syntax trees. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). 368–377.

[2] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and
Ettore Merlo. 2007. Comparison and Evaluation of Clone Detection
Tools. IEEE Transactions on Software Engineering 33 (07 2007), 577–591.
https://doi.org/10.1109/TSE.2007.70725

[3] Michel Chilowicz and Gilles Roussel. 2009. Syntax tree fingerprinting
for source code similarity detection. 243–247. https://doi.org/10.1109/
ICPC.2009.5090050

[4] CloneDR. [n.d.]. http://www.semanticdesigns.com/Products/Clone/
[5] Giuseppe Di Lucca, Massimiliano Di Penta, and Anna Fasolino. 2002.

An Approach to Identify Duplicated Web Pages. Proceedings - IEEE
Computer Society’s International Computer Software and Applications
Conference, 481–486. https://doi.org/10.1109/CMPSAC.2002.1045051

[6] Esprima. [n.d.]. https://esprima.org/
[7] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

Program Dependence Graph and Its Use in Optimization. ACM Trans.
Program. Lang. Syst. 9, 3 (July 1987), 319–349. https://doi.org/10.1145/
24039.24041

[8] Mohammad Ghasemisharif, Peter Snyder, Andrius Aucinas, and Ben-
jamin Livshits. 2018. SpeedReader: Reader ModeMade Fast and Private.
arXiv:cs.IR/1811.03661

[9] Neline Ginkel, Willem Groef, Fabio Massacci, and Frank Piessens. 2019.
A Server-Side JavaScript Security Architecture for Secure Integration
of Third-Party Libraries. Security and Communication Networks 2019
(05 2019), 1–21. https://doi.org/10.1155/2019/9629034

[10] jQuery. [n.d.]. https://jquery.com/
[11] JSX. [n.d.]. https://facebook.github.io/jsx/
[12] Kostas Kontogiannis, Renato De Mori, Ettore Merlo, M. Galler, and

Morris Bernstein. 1996. Pattern Matching for Clone and Concept
Detection. Autom. Softw. Eng. 3 (06 1996), 77–108. https://doi.org/10.
1007/BF00126960

[13] Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone De-
tection Using Abstract Syntax Suffix Trees. Proceedings - Working
Conference on Reverse Engineering, WCRE, 253–262. https://doi.org/10.
1109/WCRE.2006.18

[14] J. Krinke. 2001. Identifying similar code with program dependence
graphs. In Proceedings Eighth Working Conference on Reverse Engineer-
ing. 301–309.

[15] F. Lanubile and T. Mallardo. 2003. Finding function clones in Web
applications. In Seventh European Conference onSoftware Maintenance
and Reengineering, 2003. Proceedings. 379–386.

[16] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robert-
son, Christo Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend
on Me: Analysing the Use of Outdated JavaScript Libraries on the Web.
ArXiv abs/1811.00918 (2017).

[17] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn,
and Supachanun Wanapu. 2013. Using of Jaccard Coefficient for Key-
words Similarity.

[18] Lutz Prechelt and Guido Malpohl. 2003. Finding Plagiarisms among a
Set of Programs with JPlag. Journal of Universal Computer Science 8
(03 2003).

7

https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/ICPC.2009.5090050
https://doi.org/10.1109/ICPC.2009.5090050
http://www.semanticdesigns.com/Products/Clone/
https://doi.org/10.1109/CMPSAC.2002.1045051
https://esprima.org/
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
http://arxiv.org/abs/cs.IR/1811.03661
https://doi.org/10.1155/2019/9629034
https://jquery.com/
https://facebook.github.io/jsx/
https://doi.org/10.1007/BF00126960
https://doi.org/10.1007/BF00126960
https://doi.org/10.1109/WCRE.2006.18
https://doi.org/10.1109/WCRE.2006.18


[19] Saul Schleimer, Daniel Wilkerson, and Alex Aiken. 2003. Winnowing:
Local Algorithms for Document Fingerprinting. Proceedings of the
ACM SIGMOD International Conference on Management of Data 10 (04
2003). https://doi.org/10.1145/872757.872770

[20] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. 2008. Web
Browser as an Application Platform. In 2008 34th Euromicro Conference
Software Engineering and Advanced Applications. 293–302.

[21] Michael Wise. 1993. String Similarity via Greedy String Tiling and
Running KarpRabin Matching. Unpublished Basser Department of
Computer Science Report (01 1993).

[22] Chuan Yue and Haining Wang. 2009. Characterizing Insecure
Javascript Practices on the Web. In Proceedings of the 18th International
Conference onWorld Wide Web (Madrid, Spain) (WWW ’09). ACM, New
York, NY, USA, 961–970. https://doi.org/10.1145/1526709.1526838

[23] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshmi-
narayanan Subramanian. 2014. Dissecting Web Latency in Ghana. In
Proceedings of the 2014 Conference on Internet Measurement Confer-
ence (Vancouver, BC, Canada) (IMC ’14). Association for Computing
Machinery, New York, NY, USA, 241–248. https://doi.org/10.1145/
2663716.2663748

8

https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/1526709.1526838
https://doi.org/10.1145/2663716.2663748
https://doi.org/10.1145/2663716.2663748

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Metric-based techniques
	2.2 Token sequence-based techniques
	2.3 Tree-based techniques
	2.4 PDG-based techniques

	3 Methodology
	3.1 K-Shingling
	3.2 Winnowing
	3.3 Abstract Syntax Tree Fingerprinting

	4 Evaluation
	4.1 Stanford MOSS
	4.2 Run-time
	4.3 Accuracy
	4.4 CPU Usage
	4.5 Memory Usage

	5 Conclusion
	References

