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ABSTRACT
The Internet and its web pages have become crucial com-
ponents in today’s world. Web pages in particular, serve
a critical role in providing a platform for communication,
interaction and the dissemination of knowledge. With ad-
vancements in the field of web development, the web has
become increasingly complex, making web analysis more
difficult. Additionally, this increased complexity comes at a
cost; since not everybody has access to new technologies,
the Internet becomes less accessible to these people. This is
creating a digital divide.
The aim of my Capstone is to label web elements on the

Internet and to build models that would identify and differen-
tiate these components. The end goal of using this research
is to reduce website loading times and therefore make web
pages more accessible. I have conducted a user study where
users will identify and label various web elements on a web
page. To accomplish this, I built a tool that allows users to
interact with a web page and then select and label its web
components. With the data gathered from this study, I spent
the semester training machine learning models that would
recognize and match different web elements. Further evalua-
tion will be conducted to ensure the accuracy and validity
of the trained models. These models then can be further
used in a myriad of ways such as recognizing and removing
unnecessary elements.
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1 INTRODUCTION
The Internet and its web pages have quickly become an
integral platform for discourse and the dissemination of in-
formation. It is a rapidly advancing technology that will only
continue to improve and increase in complexity. However,
the continual advancements come at a cost: an increased
amount of resources needed. In Constructing Novel Block
Layouts for Webpage Analysis, Jiang et al. [3] point out that
web technologies are becoming more dynamic and complex,
requiring more resources in addition to presenting more ob-
stacles for web page analysis. When a web page is loaded by
the browser, it creates a Document Object Model (DOM) of
the page. The DOM is a tree structure wherein each node is a
specific DOM element that represents an element on the web
page. This DOM structure results in a segmentation of the
web page where the page is divided into different functional
regions such as the header, footer, search bar, etc. Proper
web segmentation is helpful in reconstructing web pages for
different devices. This also includes the possibility of reduc-
ing components that would require significant amount of
resources to parse.
However, the introduction of new front end frameworks,

such as React, makes it difficult for web segmentation. The
process of web segmentation looks at the correlation be-
tween similarly grouped elements. Content that are closely
positioned or logically related would be grouped closely on
the DOM model. In modern frameworks, this is not the case;
the structure of web pages are more flexible and ordered
inconsistently. Additionally, web page designs are becoming
more sporadic with a more fluid structure, making web page
analysis much more difficult.
JSLabeling provides a method for web page analysis by

breaking down web pages into smaller web elements. It takes
a higher level approach by looking at web pages from a visual
point of view instead of code. Users are tasked to directly
identify, select, and label web elements directly on the web
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page. Thus, web pages are partitioned into its components.
These labeled elements will then be used to create machine
learning models that are able to discern.

Another issue stemming from increased web complexity is
the significantly increased web page load times. InWeb-Page
Complexity and Optimization Mechanism to Reduce Web-Page
Load Time [6], Omkar Sawant and Sachin Godse explains
that longer web page load times deteriorates the user’s expe-
rience and satisfaction, resulting in users clicking away. This
is especially problematic for users who do not have the nec-
essary technology to access the increasingly complex web
pages and creates a digital divide of Internet accessibility.
With the machine learning models built from JSLabeling, we
will target this issue by fine tuning our models to recognize
elements that are unnecessary and then remove them.

2 RELATEDWORK
2.1 Web Page Analysis
The first half of my Capstone, as detailed in my Capstone re-
port, focused on labeling web components. There have been
several works that target web page analysis and reducing
page load times.

Jiang et al. [3] propose a two-stepweb segmentationmethod
that groups visual, logic, and semantic features of the con-
tents of a web page. It first creates the general layout of a
web page and then measures the similarity of different web
elements. Afterwards, it clusters similar elements into larger
content blocks for web page segmentation.

Andrés Sanoja and Stéphane Gançarski propose a hybrid
approach to web page segmentation called Block-o-Matic [5].
It entails three phases: analysis, understanding and recon-
struction. Their first phase obtains the DOM tree from the
browser and then generates a content structure. In the next
phase, it maps the content structure into the logical struc-
ture of the web page by categorizing DOM elements. Lastly
it reconstructs a document tree with the logical structure
generated.

Another method by Brian Burg, Andrew J. Ko, andMichael
D. Ernst [1] directly locates the code that creates the elements
and implements interactive behaviors. Their tool Scry looks
at the DOM and Cascade Style Sheets (CSS) of a selected
element and takes a screenshot of the element. It can be used
to look at state changes of elements and output the lines of
code that were responsible for the changes.
In terms of web page complexity, Omkar Sawant and

Sachin Godse describe a tool that measures the complex-
ity of web pages [6]. After the tool has analyzed a page, it
suggests different optimizations that would reduce web page
complexity and page load times. The optimizations include,
moving scripts to footer, loading JavaScript from Google

libraries, removing query strings, lazy loading images to im-
prove speed, removing extra font styles, and loading CSS
asynchronously.

Another tool, JSCleaner [2], attempts to reduce web page
complexity by transforming web pages to simpler versions. It
extracts inline and external JavaScript elements and catego-
rizes them into critical, replaceable, and non-critical. It then
removes all non-critical elements and replaces JavaScript
elements with HTML elements while keeping the critical
components.

2.2 Machine Learning
The second half of my Capstone report focuses on training
machine learning models to identify and label web elements.
We decided to devote our time into the Contrastive Language-
Image Pre-Training (CLIP) neural network by OpenAI that
was recently launched earlier this year.

In the new CLIP model [4], Radford et al. created a neural
network that is trained on image text pairs. Given an image,
it uses natural language processing to find a caption that fits
the image. It is largely built upon zero-shot transfer, natural
language supervision, and multimodal learning. Oftentimes,
images are paired with text on the web (captions). CLIP
models take into consideration that there are a wide variety
of visual concepts in images and associate them with their
captions. This neural network is intended to be used in a
zero-shot manner, thus the data it uses vary greatly. As a
result, CLIP models are general and can be applied to various
different types of data sets.

3 METHODOLOGY
3.1 Web Labeling Tool
JSLabeling includes two features worth noting: an intuitive
user interface and an accurate method in gathering data on
web elements.

The user interface of JSLabeling is composed of an iFrame
on the left side of the users screen that showcases a web
page and a p5.js sketch on the right side that contains an
image of the same web page with labeling buttons on the
top (refer to figure 1). The workflow of the tool is simple
and straightforward: the user interacts with the web page on
the left (iFrame) to determine the various functionalities of
the web elements. After the user has familiarized themselves
with the web page, the users are tasked to label the web
elements on the right side (the image on the p5.js canvas).
This interface allows users to reference back to any unknown
elements by simply interacting with the iFrame on the left.
The process to label a web element is simple: the user

must click and drag an outline of the element, much like
the marquee tool in Adobe Photoshop or Illustrator. This
will generate a red rectangle that references the current area
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Figure 1: An image of the user interface

Figure 2: An image of the search bar selected

that is selected (refer to figure 20). Upon mouse release, the
rectangle will stay in place and the user will be able to la-
bel the selected element by pressing one of the buttons on
top. The list of web elements are as follows: image carousel,
menu, text, image, navigation bar, search bar, videos, socials,
ads, and a custom tag. In cases where the above mentioned
labels do not fully describe a web element, users are able to
generate their own tag with the custom tag. Additionally, all
of the label buttons are color coded; when the selected area
is labeled by pressing on one of the label buttons, the rectan-
gle will take on the same color as the label selected (refer
to figure 3). Additionally, the x-coordinates, y-coordinates,
width, height, website, and label are stored. The coordinates
are used later on to crop a higher quality image of the same
web page.

Before the labels are used for to train our machine learning
models, the labels have to be filtered and cropped. Using
the coordinates from the labeling phase, a Python program
will crop the labels from a higher resolution image of the
web page. The labels will be sorted in separate folders that
reference its label type and used to train machine learning

Figure 3: An image of the search bar labeled

models that will at first identify and recognize different web
elements.

3.2 Machine Learning Models
For the semester, most of my effort has been focusing on
training machine learning models to recognize and label dif-
ferent web page elements. We decided to focus on two differ-
ent machine learning models: OpenCV’s cascade classifiers
and OpenAI’s Contrastive Language–Image Pre-training
neural network.

Capstone 1 was dedicated to training OpenCV’s Haar cas-
cade classifiers to identify and label web elements. Cascade
classifiers are trained by using positive and negative images.
Positive images are images of what we want the model to
identify and negative images are anything else. The Haar cas-
cade classifier first creates Haar features that are calculations
performed on rectangular regions at specific locations of a
detection window. Essentially, it calculates the sum of a pixel
density within a given rectangular region and then compares
it against the sum of different regions to find the difference.
Calculating the sum of every single pixel of the image and
comparing it with other regions is computationally heavy,
thus cascade classifiers utilize integral images to reduce the
load. Integral images speed up these calculations by grouping
pixels into a small rectangle and creating an array reference
to each of these rectangles. Then, it uses Adaboost training
to choose the best features by using a combination of “weak
classifiers” to create a “strong classifier." Adaboost uses a
sliding window over the input image and computes Haar
features on each subsection of the image (integral image),
creating weak learners. Cascade classifiers utilize a large
amount of weak learners to create strong learners. Through a
process called cascading classifiers, weak learners are trained
using boosting and then used to predict if an object is found.
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Figure 4: Cascade Classifier 10 Steps, Double Negative
Sample Size

Figure 5: Cascade Classifier 10 Steps, Half Negative
Sample Size

This process is repeated for multiple stages until the model
is finished training.

Traditionally, cascade classifiers were used for identifying
faces, but we decided to see if it would be able to detect web
elements. Using the data gathered from the web labeling
user study, I trained a model to identify search bars. To test
if my model worked, I would use the screenshot of different
websites and see if the model would be able to locate the
search bar located on the page. The results I obtained were
subpar as the model was never able to only locate the search
bar. The first model I trained had the following parameters:
trained for 10 steps, a detection window of 60px by 30px, and
double the negative images to positive images (see figure 4).

After seeing the initial results, I attempted to play around
with the parameters in hopes of better results. I tried using
half the amount of negative samples (figure 5), increasing
the number of steps (figure 6), the hit rate and false alarm
rate (figure 7), and detection window size (figure 8).

Despite changing the parameters, the model was unable to
precisely locate the search bar. A possible explanation for this
is the small sample size that was used. Additionally, it could
be that cascade classifiers have a hard time differentiating
between different web elements.

Figure 6: Cascade Classifier 12 Steps, Half Negative
Sample Size

Figure 7: Cascade Classifier 12 Steps, Double Negative
Sample Size, False Alarm Rate: 0.3, Hit Rate: 0.999

Figure 8: Cascade Classifier 10 Steps, Double Negative
Sample Size, Detection Window: 100px by 35px

After training the cascade classifier models, we attempted
to use OpenAI’s CLIP models. CLIP is unique in that it looks
at the relationship between a whole sentence and the image
it describes; it is trained on full sentences instead of single
classes. The idea is that by looking at whole sentences, the
model can learn more things and identify some pattern be-
tween images and texts. As a result, it can identify abstract
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concepts within an image through the semantics of the at-
tached caption in addition to differentiating between simple
objects. Although CLIP can serve as a zero-shot image classi-
fier, it can also serve as a classifier by itself. We understood
that our data size was insufficient to train an accurate model,
thus we opted for the transfer learning approach. By reusing
a pre-trained model, training CLIP with our web image data
set, we can obtain a model that is customized more towards
our needs of identify different web elements. We utilized our
CLIP model in two ways: given a query, return the match-
ing images and given an image, return the prediction of its
category.

Before we train our CLIP model, we have to encode both
our images and its describing text. We used the DistilBERT
model from the HuggingFace library as our text encoder. It
tokenizes the sentences with DistilBERT tokenizer and then
feeds the token ids and the attention masks to DistilBERT.
Afterwards, we used ResNet50 from PyTorch Image Models
library (timm) to encode our images, converting them to a
fixed size vector with the size of the model’s output channels.
Once we have converted both the text and the images, we
project them onto the same space and compute the loss by
finding the dot product between the two vectors. By doing
this, we want the model learn "similar representations (vec-
tors)" for a given image and the caption describing it. At the
end, all our vector pairs are converted a matrix and fed into
the CLIP model to train.
We trained our model with the following web elements:

menu bars, search bars, socials, images and text. For each of
the elements, I standardized the captions with "An example
of a web element." To test the model, I used different captions
to query it: "search bar (figure 9)," "an image of a search bar
(figure 10)", and "An image of a search bar taken from a web
page (figure 11)." This model was also tested on socials (figure
12) and menu bars (figure 13).

From the results gathered, it was evident that the model
struggled to identify different web elements. The most ac-
curate was the search bar, and even then, it was not very
accurate. Changing parameters and the captions used to train
the models did not make much of a difference in the results.

To further fine-tune our model, we shifted into returning
the accurate category for a given image. When given an
image, a list of probabilities for each category was listed.
Figure 14 and figure 15 showcases the probability prediction
for an image of a search bar and an image.
Our first model seemed to do well in recognizing search

bars, images, and text, but failed to accurately predict and
recognize socials and menus. Figure 16 and figure 17 list the
probabilities for a menu and socials respectively. For many
of the predictions, the model seemed to label menu bars and
socials as search bars.

Figure 9: CLIP model queried with "search bar"

Figure 10: CLIP model queried with "an example of a
search bar"

Given the nature of CLIP, one way to fine-tune the model
was to target the captions themselves. Starting with socials,
we realized that the model was unable to build the textual re-
lationship between the text "socials" and an image of socials.
Thus, we tried various combinations of captions to see if we
could improve the performance. This included breaking the
socials into each individual social media such as Facebook,
Instragram, etc. and retraining our model. This approach
did not improve the accuracy of our model for socials. We
also retrained our model using the term "social media" in-
stead of socials and it drastically boosted the performance of
our model. The model seemed to already have pre-existing
relationships between the image of socials and the caption
"social media". Figure 18 shows the difference in predicted
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Figure 11: CLIP model queried with "An example of a
search bar taken from a web page"

Figure 12: CLIP model queried with "An example of
socials"

probabilities for an image of social media. Using the caption
"socials" predicted the image to be a search bar while the
caption "social media" predicted the image accordingly. Com-
pared to our initial model, we were able to boost the accuracy
specifically for socials from 20 percent to 75 percent.
The other category that presented much trouble were

menus. Since we are utilizing a pre-trained model, we re-
alized that the term "menu" could represent a food menu
or a website menu and that a relationship could have al-
ready been built on a different definition. Additionally, on
a web page, there are various types of menus: menu bars,
hamburger menus, and lines of text. We trained our model

Figure 13: CLIP model queried with "An example of a
menu bar"

Figure 14: Predicted probabilities for search

Figure 15: Predicted probabilities for image



JSLabeling: A Novel Approach to Labeling the Web Capstone Project 2, Spring 2021, Abu Dhabi, UAE

Figure 16: Predicted probabilities for menu

Figure 17: Predicted probabilities for socials

Figure 18: Predicted probabilities for an image of so-
cials with the caption socials and social media

with various different approaches such as using the captions
menu or menu bar or separating menus in hamburger menu
and menu bars. The captions menu and menu bar did not
increase the accuracy of our model. Separating the menu
into hamburger menu and menu bars did boost the perfor-
mance and accuracy of specifically hamburger menus but it
significantly decreased the accuracy of other components.
We decided to be more specific and retrained our model with
the caption "website menu bar" and it significantly increased
the accuracy of the model from 11 percent to 81 percent.
Figure 19 and 20 shows the predicted probabilities for an
image of a menu with the caption "menu" and "website menu
bar".

Figure 19: Predicted probabilities for an image of a
menu with the captions menu and website menu bar

Figure 20: Predicted probabilities for an image of a
menu with the captions menu and website menu bar

4 EVALUATION
JSLabeling was be evaluated by users in two different phases:
the process of labeling web pages and the validity of the ma-
chine learning models. There was a user study that evaluated
the labeling process.

In first user study, participants were tasked to identify, se-
lect, and label web page. This entire process was documented.
Additionally, the quality of the labels selected (accuracy and
precision) will be recorded in the form of a screenshot. The
selected labels are also filtered through and cropped before
they are used to train models. Lastly, users were surveyed
about their overall experience with the tools.

After our machine learning models were built, the validity
of the trained models were tested on a test data set. The test
data set was composed of around one hundred web compo-
nent images and the predicted category was generated for
each image. The accuracy was then divided into individual
categories for each type of web element and an overall ac-
curacy was computed. For predictions that were below the
threshold of 50 percent, we decided that those predictions
were not conclusive and classified it as categorized. With our
trained model, we were able to achieve an overall accuracy
rate of 76 percent with individual accuracy of search bars,
images, and text reaching 94 percent, 87 percent, and 88 per-
cent respectively. Lastly, we compared our results against
the base CLIP model in which we utilized as our starting
point. The base model was only able to accurately predict an
image 54 percent of the time.
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5 PROJECT TIMELINE
This Capstone project was divided into two parts: web ele-
ment labeling and building machine learning models.

5.1 Web Labeling
The first semester mostly dealt with gathering data from web
elements. To achieve this, we designed a tool that allowed
users to identify, select, and label different web elements on
web pages.

(1) DesignWebLabelingTool (2weeks):The first three
weeks will be spent specifying the requirements for
the tool along with the user interface.

(2) Build Web Labeling Tool (3 Weeks): The tool will
be created using HTML/CSS/JavaScript/PHP, iFrames,
and p5.js. It will be connected to a MySQL database
and then hosted on the server.

(3) Testing (2 Week): After the tool has been deployed,
it will be tested thoroughly to fix potential bugs or
errors.

(4) User Study (2weeks):A user studywill be conducted
tasking users to label various web elements.

(5) Data Analysis (2 weeks): The first two weeks will be
spent analyzing the data gathered from the user study.
The data will be filtered through so that it is easily
cropped and used for the machine learning models.

(6) Python Cropping Tool (2 Weeks): A Python pro-
gram will be built to read from our SQL database
(where all the user study data is stored) and crop web
pages based on the parameters that were collected
during the user study.

5.2 Machine Learning Models
The second part of my Capstone largely involved the data
that has been gathered from the tool and using the data to
build machine learning models.
(1) Machine LearningModels (7Week): From the cropped

web elements, wewill continue trainingmachine learn-
ing models, primarily with OpenAI’s CLIP models. The
focus is on fine-tuning the model for accurate results
and testing them on various web components.

(2) Testing (3 weeks): The model will be trained on test
data sets and compared against the base CLIP model.

(3) Review and Application (2 weeks): The results will
be reviewed and further applications will be discussed.

6 NEXT STEPS
Our next steps involve utilizing QLUE, a tool that segments
the web page, to further enhance our model. Given a screen-
shot of a web page, QLUE is able to isolate each independent
element on the page. There are two applications to this: first

we are able to further train our model with this data, or more
importantly, utilize QLUE to further label the web.

7 CONCLUSION
The Internet is a fantastic piece of technology that contains
numerous amounts of possibilities. However, with each im-
provement it risks leaving many of its users behind. JSLabel-
ing attempts to remedy this bridging divide by providing an
approach to web page segmentation and analysis through
labeling web elements. These web elements can then be used
to create machine learning models that can help identify and
recognize web elements, aiding in web segmentation and
analysis. With proper web page segmentation and analysis,
we can come up with methods to reduce web page com-
plexity and page load times. This could include fine tuning
models to identify and remove unnecessary web elements.
The greatest attribute of the Internet is its ability to connect
people and thus its imperative that accessibility should not
become an issue.
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