
Implementation of a Webpage Editor for Pages with
Minimum JavaScript Dependency

Runyao Fan
Computer Science, NYUAD

rf1888@nyu.edu

Advised by: Professor Yasir Zaki, Professor Riyadh Baghdadi

ABSTRACT
JavaScript loading and parsing have been a significant source
of page loading time. To enable mobile phone users in re-
gions with poor internet connections, it is necessary to create
lightweight web pages devoid of the myriad of functionalities
enabled by JavaScript. Potential solutions include optimizing
the loading process of websites, replacing JavaScript with an-
other more efficient way to implement webpages’ interactive
features, or limiting JavaScript libraries and functionalities
supported by web editors or browsers. Over the course of our
research, we have noticed that recompiling JavaScript into
Go and WebAssembly does not bring improvement in page
loading time. Pursuing the approach of simplifying webpage
structure, this project designs and implements MAML Edi-
tor, a webpage editor that creates webpages with minimum
JavaScript dependency. The editor consists of a React-based
front end and a back end implemented by Flask. Webpages
created by users are transported to the back end in the for-
mat of Mobile Application Mark-up Language (MAML). The
back end in turn translates the MAML objects to HTML
pages with minimum JavaScript dependency. We carried out
a study of 17 existing pages by creating pages that are similar
in content and style using the MAML Editor. The MAML
pages on average reduce the time taken for the “load” event
to occur by 93.5%.

KEYWORDS
page load time, web page simplification, website editor, web
page interactive functionality

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 2, Spring 2022, Abu Dhabi, UAE
© 2022 New York University Abu Dhabi.

Reference Format:
Runyao Fan. 2022. Implementation of a Webpage Editor for Pages
with Minimum JavaScript Dependency. In NYUAD Capstone Project
2 Reports, Spring 2022, Abu Dhabi, UAE. 7 pages.

1 INTRODUCTION
The Internet plays an important role in the life of people
in less developed countries and regions. It offers an inex-
pensive way for the less privileged to acquire otherwise
inaccessible information, such as best practices in farming,
information on disease prevention and treatment, and ed-
ucation resources in many subjects and fields. Moreover,
the internet has improved the standard of living for many
by providing a platform to advocate for their product and
business [3] [5]. Nevertheless, internet accessibility in un-
derdeveloped regions is still heavily restrained due to the
lack of infrastructure development and the poor processing
power of low-end smartphones. Page load times in develop-
ing countries can be as high as 60 seconds, while more than
half of users tend to stop visiting a page if the page load time
exceeds 3 seconds [1]. Page load time in developing regions
needs to be reduced so that people from these areas can have
unhindered internet access that everyone deserves.
Research has shown that the complex structure of mod-

ern webpages is a significant reason for long page loading
time. Modern webpages often request resources from many
servers located across the globe [4]. A study by Butkiewicz
et. al. showed that over 60 percent of webpages make re-
quests from no less than five different non-origin sources,
and these requested contents account for over 35 percent
of the page size [2]. Moreover, the loading of a webpage is
blocking and recursive. When the initial HTML document
is parsed, it may make requests to more server locations
for new resources, which may, in turn, make more internet
connections [2]. Moreover, the evaluation of certain parts
of an HTML document, such as inline JavaScript, blocks
subsequent HTML parsing and the loading of a webpage
becomes going through a complex dependency graph, where



Capstone Project 2, Spring 2022, Abu Dhabi, UAE Runyao Fan

many operations await completion of other downloads and
evaluations.
This project aims to reduce page loading time, especially

for mobile users in regions with poor internet infrastruc-
ture. It is based on MAML, a mark-up language format that
inhibits JavaScript and represents web page elements in a
simple way. Nevertheless, interactivity has become an in-
dispensable feature of many websites and this project aims
to retain essential interactive features for users while using
the least amount of JavaScript code. As MAML pages are
created with the MAML editor, users simply need to be con-
cerned with the type of components they want to add to the
webpage. The concern of how different types of components
are implemented lies in the backend, where user-created
components represented by MAML objects are translated
into HTML pages. As such, we can control the amount of
JavaScript in the generated pages by carefully designing the
translation process. While many interactive features can be
implemented using JavaScript’s rich collection of libraries,
we found that components such as carousel and dropdown
menus can be implemented with just HTML and CSS. When
interactive components do not need JavaScript to function,
the translation process creates interactive components in
HTML pages without using JavaScript.

2 BACKGROUND RESEARCH
As we aim to limit the amount of JavaScript in the editor-
generated websites, we first conducted research on the web-
site features that may depend on JavaScript and are used the
most frequently. In this way, we can allow the editor to sup-
port the most necessary JavaScript functionalities, making
the generated websites as lightweight as possible without
compromising the interactiveness essential for users.

2.1 Subject of Analysis
We used Amazon’s Alexa Web Ranking service to inspect the
world’s top 100 websites by traffic. Alexa ranks the websites
by a combined score of a website’s visitors and pageviews,
reflecting the popularity of websites in the entire world in-
stead of just developed regions like the US. For example, the
top 100 list consists of many websites catering to specific
geographical communities. Web portals of various devel-
oping countries, such as qq.com and sohu.com from China
and okezone.com from Indonesia, are included in the list.
By having these websites less known in other countries but
playing an important role in many regions with poor internet
infrastructures, the list allows us to analyze website func-
tionalities more comprehensively. We find that these web
portals widely used in developing countries have layouts we
were unfamiliar with. The analysis provided insights into
the usage of interactive components by different websites

and gave us ideas on the components the webpage editor
should support.

2.2 Website Analysis Methodology
To find the most used interactive features, we open each
website in the list, observe components that change automat-
ically, hover on different parts of the page, and click different
parts of the website. If we find any interactive event, we
then decide if the visual effects depend on JavaScript. For
example, many websites feature side menus and dropdown
bars that only appear when a user hovers the mouse over or
clicks specific components. These effects are often realized
by using JavaScript event listeners.

2.3 Website Analysis Result
After inspecting the top 100 websites according to Amazon
Alexa, we narrowed down the most used interactive features
to 11, which are the following:

• drop-down menu
• loading of new content when the page reaches its bot-
tom

• display video preview when the mouse hovers over
the thumbnail

• video player
• carousel
• component that appears after scrolling below a certain
point

• countdown timer
• animation triggered by scrolling
• auto-animation
• toggle button that changes page theme
• notification window

This finding indicates that although JavaScript supports a
large number of libraries and has been a significant source
of websites’ loading time, different websites share many
essential functionalities. As a result, our inspection shows
that the webpage editor only needs to support a small set
of JavaScript functionalities used by the most popular web-
sites. Nevertheless, assessing more websites may allow us to
discover other interactive features that the webpage editor
should also support. A future task of the project may be to
inspect more websites and categorize and rank the interac-
tive features. This way, we will have more comprehensive
information on the JavaScript-enabled functionalities that
we should consider implementing for the webpage editor.

3 DESIGN
To allow content creators to create new webpages or con-
vert existing webpages to ones compatible with the MAML
specification, we need a webpage editor that gives the users
a simple webpage creation interface while restricting the



Implementation of a Webpage Editor for Pages with Minimum JavaScript Dependency Capstone Project 2, Spring 2022, Abu Dhabi, UAE

types of JavaScript functionalities supported. While several
commercial webpage editors are in the market, they do not
support the customization we need, such as saving the built
website to a specific format or restricting the set of JavaScript
supported. As such, we choose to develop a webpage editor
on our own while referring to existing webpage editors for
design and UI practices.

3.1 Expected Outcome
We aim to build a browser-based webpage editor that allows
content creators to design and produce websites that resem-
ble the look and functionality of websites we commonly
browse. For example, the editor should support text editing,
image upload, positioning, and the addition of interactive
features such as buttons and side menus. Moreover, the ed-
itor should allow content creators to preview the website
in a non-editable mode. After successfully implementing
the webpage editor with the said functionalities, the editor
should also export the completed website in files that follow
the syntax specifications of pre-existing MAML implementa-
tions.
As there are existing webpage editors in the market, we

used some to get ideas on the editor page layout and function-
ality we should implement for theMAML editor. For example,
Wix is an editor with a large user base, and its designs have
been tested by many. As Figure 1 below shows, the viewport
contains a large editing area with grids, and a side panel
on the left end of the page, allowing users to add different
elements to the page. Ideally, our website editor should fea-
ture a similar side panel with component types such as text
box, image, carousel, and dropdown menus. Content users
will click on the buttons to add components to the editing
area, where they can further customize the content and style
of the elements and position them freely in the area. After
finalizing the JavaScript functionalities that can be added to
the product pages, each functionality can correspond to a
button on the side panel. In this way, we can implement the
functions of the editor incrementally. Each time, we can add a
new button and implement the functionality with minimum
JavaScript dependency.

3.2 Development Framework
3.2.1 React. Given the functionalities the editor should sup-
port, we decided to develop the editor using React. React is a
JavaScript library and a popular solution to build user inter-
faces for web-based applications. React treats a webpage as
different components that maintain their own state. Develop-
ers can define a component to specify how it should look on
the page by HTML-like syntax and create and manage the
component’s state. When a component changes in its state,
React re-renders the particular component without the need

Figure 1: Layout of Wix Website Editor

to reload the whole page. Components are also reusable, al-
lowing developers to quickly create components of the same
style but different content. These features of React are very
useful for the implementation of a webpage editor.
First of all, the editor’s page will be dynamic, as users

should be able to add, delete, position, and resize different
types of components. React’s component-based approach
to web development addresses the design needs of the ed-
itor. In React, developers can define reusable components
that can be placed in different positions on a webpage. It
acts as a template and an instance of a reusable component
can have its unique content based on properties passed into
it. React applications are also fast because React supports
component-wise re-rendering. As users need to constantly
edit the components they add to the editing area, React re-
renders the parts of the page being edited by the content
creator while reducing computational cost by leaving ev-
erything else intact. Another advantage of React is that the
reusable component approach works well for the webpage
editor components as they share a number of functional com-
monalities. For example, regardless of whether a component
is a text box, a picture, or a dropdown menu, the content
creator should be able to resize them and move them around.
Preferably, the editing area should also assist creators in
positioning the components by supporting features such as
automatic alignment and automatic centering. The idea of
abstraction in React allows us to create a grid layout system
where users can add and remove rectangular components
in it. To differentiate different types of components, we sim-
ply need to customize the UI on top of the shared layout
implementation.

3.2.2 Node.js and NPM. Another set of tools the project de-
pends on is Node.js and its Node Package Manager (NPM).
Using Node.js to create and manage React applications is
a widely-used practice, and NPM hosts a large number of
packages and extensions that we can conveniently import



Capstone Project 2, Spring 2022, Abu Dhabi, UAE Runyao Fan

into the project. For example, a grid layout system support-
ing dynamic resizing and positioning is a complex task, and
we searched for existing solutions on NPM. As a result, we
found that an NPM package named react-grid-layout is used
by many people to manage pages with moveable, resizable
components. It allows users to drag and drop components
and implements a grid system where components snap into
the pre-defined positions. Comparing the package with sev-
eral other solutions such as react-moveable, another NPM
package, we decided to use the react-grid-layout package
as the backbone of the webpage editor, as it supports the
aforementioned functionalities that are going to be useful
when building a webpage editor.

4 IMPLEMENTATION
The editor is a browser-based application that supports user
registration, authentication, editor state persistence, and
translation of MAML pages to HTML pages. Its front end is
implemented by React and its backend is implemented by
Flask.
When a user visits the register and log in page, they can

either register as a new user or log in if they have registered
before. After logging in, users will be redirected to Created
Pages Gallery, where they can view and retrieve pages they
have created before. This is realized by saving users’ page
information in the database when they send their created
pages to the back end for translation. The user pages are
grouped by their usernames.

4.1 Editor
The editor page consists of a sidebar and an editing area.
The sidebar features buttons for users to add different com-
ponents to the editing area. To have different buttons add
different types of elements to the editing area, each button is
bounded to a specific function. The particular function then
adds an item of the corresponding type to the list in the state
of the component managing the editing area, EditorWindow.
When elements are rendered, the type of item is checked and
the corresponding type of element is rendered on the page.

Once the components are created in the editing area, the
user can edit, reposition, and resize them. After the user
is satisfied with the created page, they can click “Generate
Page” on the sidebar to send the page to the back end for
translation and HTML page creation.

4.1.1 React-grid-layout. The editing area’s most important
features, such as dynamic component position and size, are
realized by the NPM Package react-grid-layout. The entire
editing area is managed by EditorWindowwhich relies on the
underlying implementation of react-grid-layout. The com-
ponent state stores position and index of each component
instance. Each component instance is assigned a unique ID,

Figure 2: Creating a Page Using the Editor

which cannot be reassigned to new component instances
even if an old component instance is removed from the edit-
ing area. This helps prevent errors that may arise due to
duplicate component instance IDs.
The addition and deletion of components in the editing

area are realized by changing the state of the EditorWindow
component. When initialized, EditorWindow contains a list
to store the key, position, and type of all moveable rectangles
in the editing area. When a new rectangle is added, the
button calls a function to append a new item to the list. The
change in list content triggers EditorWindow to re-render
itself. During the rendering, EditorWindow iterates through
the items in the list and creates a rectangular component
for each item. Removing elements works in a similar way.
Instead of appending an item, the triggered function removes
the corresponding item from the list, and EditorWindow is
re-rendered to reflect the change.
The React component managing the editing area also

stores information about component instances, such as im-
ages of image and carousel instances, in its state. This im-
plementation allows the component to have direct access to
information of each component instance so that it can send
them conveniently to the back end when the user finishes
creating the page. Subsequently, functions that modify in-
dividual component instances are defined in EditorWindow
and passed to the instances as props.

4.1.2 Text Box. The text box content creators add to the
editing area should support input and styling options, such
as font type, size, and style. In other words, we need to
implement a rich-text editor within a text box component.
Again, a number of rich-text editors that can be imported
to projects via NPM are available, and after considering the
quality and code maintenance of different rich-text editor
components, we decided on a package called react-quill, a
React implementation of Quill.js. Quill.js is a rich text editor
that natively works by its JavaScript library, and react-quill



Implementation of a Webpage Editor for Pages with Minimum JavaScript Dependency Capstone Project 2, Spring 2022, Abu Dhabi, UAE

offers a convenient way for developers to import the editor
to React applications.
We made modifications to Quill.js’ original implementa-

tion to persist the content of text boxes. With the default
implementation, whenever new component instances are
added to the editing area, the editing area is re-rendered
and text boxes lose their content. Although React only re-
renders the relevant components in a page, adding new com-
ponent instances causes positional information in EditorWin-
dow’s state to change, and adding or removing component
instances triggers the re-rendering of all the elements in
the editing area. Quill.js’ original implementation does not
store the content of text boxes in its state. While storing the
content in Quill.js’ own React component state addresses
the issue, we eventually stored text information of text box
instances under EditorWindow so that they are accessible
when EditorWindow needs to send all page information to
the back end.

4.1.3 Navigation Bar. When a user clicks “Toggle Navbar”,
a window pops up and allows them to choose a color for the
navigation bar. The color picker is implemented using NPM’s
react-color package and allows users to either pick a color
from the color wheel or specify a color by its hex code. To
add regular or dropdown buttons to the navigation bar, users
can click “Add Navbar Button” or “Add Navbar Dropdown”.
The clicking triggers a popup window, displaying the react
component that takes users’ input and passes the information
to EditorWindow. All navigation bar button information is
stored in an array in EditorWindow.
To allow users to move around and delete the created

navigation bar buttons, the navigation bar is also based on
react-grid-layout. EditorWindow sends all the button infor-
mation to the navigation bar component as props, and the
navigation bar component uses this information to generate
dynamic, moveable buttons.

4.1.4 Images and Carousels. When users click “Add Pic”,
EditorWindow creates a new element of type “picture” in its
state’s item list and causes a re-render of the editing area.
A component instance of UploadAndDisplayImage would
appear in the space, featuring a button for image selection
and upload. After the user uploads the image, the image
file is stored in EditorWindow’s state and passed to the Up-
loadAndDisplayImage component for display.

When users click “Add Carousel”, the CarouselEditor com-
ponent appears in a popup window, allowing users to up-
load images to the editor. When the user is satisfied with
uploaded images and clicks "create", CarouselEditor calls a
function to store image files in EditorWindow’s state and
adds a carousel item to EditorWindow’s state. When Edi-
torWindow re-renders, this newly added carousel item is
rendered with the image files already stored in the state.

4.2 Translation
When the user clicks “Generate Page”, they key in a page
name and EditorWindow calls the “generatePage” function
to generate MAML objects based on the component’s state
as well as positional information provided by the DOM.
MAML stores the most essential information needed for

generating a webpage. It divides a page into fundamental
types of components such as text, image, and buttons, and
records their information such as text content, position,
width, and height.

Figure 3: Sample MAML Objects

When the “generatePage” function is called, EditorWin-
dow’s state is inspected, as it stores a list of items in the edit-
ing area. While some information is stored in the state, some
other information needs to be accessed through the DOM.
When each element is created, they are given an HTML
ID linked to their unique ID in EditorWindow’s state. This
allows us to use query selectors in JavaScript to pinpoint
the item’s corresponding HTML element and get relevant
information such as position and style.
After the “generatePage” function acquires all the neces-

sary information for an item, it generates the MAML repre-
sentation in the form of a JSON object string and appends
it to the data that needs to be sent to the back end. After all
data is gathered, the front end sends the MAML objects JSON
string and all necessary files such as images to the backend.
Before the files are sent to the back end, they are renamed
with the unique ID of their items so that items and their files
can be easily matched in the back end.

Upon receiving a request from the front end, the back end
store all files under the page name specified by the user. It
then runs a Python script to parse the MAML objects JSON
string. The script creates an HTML page by adding relevant
elements to a string and adding more elements as it parses



Capstone Project 2, Spring 2022, Abu Dhabi, UAE Runyao Fan

the MAML objects. It uses the position, style, and content
information from the MAML objects to create corresponding
HTML elements. After the parsing, the script writes the
string into an HTML file which is ready to be displayed by
browsers.

5 PERFORMANCE EVALUATION
To compare the loading time of the MAML pages with ex-
isting webpages, we chose 20 existing webpages to create
MAML pages that have similar content and style. Given the
limited functionalities supported by the MAML editor, we
ended up creating 17 MAML pages that are able to produce
most of the content of the original webpages.

Figure 4: An Existing Webpage

Figure 5: Corresponding MAML Page

To produce a fair comparison of loading time, as theMAML
pages are served from a server in New York University Abu
Dhabi, the original webpages are cloned and hosted on a
proxy server at the university. Firefox browser was used to
inspect the loading time of webpages, with caching disabled.

Time taken for both DOMContentLoaded and Load event
to fire are measured. All measurements are done at the same
time of the day with a Wi-Fi network connection, and each
page is loaded five times to produce an average loading time.
Given that the Load event takes into consideration the time

to fetch resources like images, we believe that it is a better
measurement for page loading time. Given that one of the 17
pages took extremely long to fire the Load event, we chose
to use data of 16 pages. On average, MAML pages reduce
page loading time by 93.5%.

Figure 6: Loading Time Comparison

6 LIMITATIONS AND FUTURE PLAN
As the MAML editor supports limited webpage components,
some elements cannot be recreated using the MAML editor
at the moment. For example, webpages can have complex,
multi-layered dropdown menus and this is not supported by
the MAML editor. The editor also does not support elements
such as icon buttons and Twitter post plug-ins. Moreover,
many websites display images in webp format and this is not
commonly used by users who may use the MAML Editor.
The temporary solution during the webpage-making process
was to convert webp images into jpeg format, which causes
the file size to be different and introduces more variables to
the page loading time comparison.
Given that the created MAML pages do not have all the

functions of the original webpages, the significant reduction
in page loading time is partly because the MAML pages are
not fully functional. Nevertheless, the MAML pages achieve
the essential function of displaying texts, images, and links
for users while taking a significantly shorter amount of time
to load. This shows that generating simplified webpages that
sacrifice some functionality can be a way to provide acces-
sible online resources to communities with poor internet
infrastructure and limited mobile phone processing power.
The next step will be to expand the range of components
supported by the editor so that pages with more complete
functionalities can be produced. In the future, the design
of the user interface can be improved, and we also plan to
implement back end functionalities such as storing editor
states for users to resume editing when they log in again.



Implementation of a Webpage Editor for Pages with Minimum JavaScript Dependency Capstone Project 2, Spring 2022, Abu Dhabi, UAE

7 CONCLUSION
Continuing the effort to reduce page loading time by MAML,
this project aims to create an editor that allows people to
create lightweight MAML pages on their own. To find a bal-
ance between minimum webpage complexity and interactive
feature compatibility, we researched the essential JavaScript-
dependent web page features. The resulting editor supports
a number of components and has produced webpages that
have similar content and style as the original webpages while
loading in a much shorter time. This shows us the viability
of generating simplified webpages for people with limited
internet access. With future expansion on the functionalities
supported by MAML Editor, it will offer a way for people in
developing regions to create and share webpages that are
fast to load and easily accessible.

REFERENCES
[1] Daniel An. 2017. Find Out How You Stack Up to New

Industry Benchmarks for Mobile Page Speed. https:
//www.thinkwithgoogle.com/intl/en-ca/marketing-strategies/app-
and-mobile/mobile-page-speed-new-industry-benchmarks/

[2] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011.
Understanding Website Complexity: Measurements, Metrics, and Im-
plications. In Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference (Berlin, Germany) (IMC ’11). As-
sociation for Computing Machinery, New York, NY, USA, 313–328.
https://doi.org/10.1145/2068816.2068846

[3] Catalina M. Danis, Jason B. Ellis, Wendy A. Kellogg, Hajo van Beijma,
Bas Hoefman, Steven D. Daniels, and Jan-Willem Loggers. 2010. Mobile
Phones for Health Education in the Developing World: SMS as a User
Interface. In Proceedings of the First ACM Symposium on Computing for
Development (London, United Kingdom) (ACM DEV ’10). Association
for Computing Machinery, New York, NY, USA, Article 13, 9 pages.
https://doi.org/10.1145/1926180.1926197

[4] Rodérick Fanou, Gareth Tyson, Pierre Francois, and Arjuna Sathiaseelan.
2016. Pushing the Frontier: Exploring the African Web Ecosystem. In
Proceedings of the 25th International Conference on World Wide Web
(Montréal, Québec, Canada) (WWW ’16). International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 435–445. https://doi.org/10.1145/2872427.2882997

[5] Fie Velghe. 2013. Literacy Acquisition, Informal Learning and Mobile
Phones in a South African Township. In Proceedings of the Sixth Interna-
tional Conference on Information and Communication Technologies and
Development: Full Papers - Volume 1 (Cape Town, South Africa) (ICTD
’13). Association for Computing Machinery, New York, NY, USA, 89–99.
https://doi.org/10.1145/2516604.2516615

https://www.thinkwithgoogle.com/intl/en-ca/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/intl/en-ca/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/intl/en-ca/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://doi.org/10.1145/2068816.2068846
https://doi.org/10.1145/1926180.1926197
https://doi.org/10.1145/2872427.2882997
https://doi.org/10.1145/2516604.2516615

	Abstract
	1 Introduction
	2 Background Research
	2.1 Subject of Analysis
	2.2 Website Analysis Methodology 
	2.3 Website Analysis Result 

	3 Design
	3.1 Expected Outcome
	3.2 Development Framework

	4 Implementation
	4.1 Editor
	4.2 Translation

	5 Performance Evaluation
	6 Limitations and Future Plan
	7 Conclusion
	References

