
JSCleaner: Firefox Plugin
Manesha Ramesh

Computer Science, NYUAD
mr4684@nyu.edu

Advised by: Yasir Zaki, Moumena Chaqfeh

ABSTRACT
JavaScript constitutes a disproportionate percentage of the
web while also being a dominant factor in slow page loads
and poor browsing experience. However, JSModel proposes
a machine learning based approach to classify JavaScript
code into 14 categories; based on these classes, JavaScript
can be deemed essential or non-essential to a web page
load. This capstone realizes a use case scenario for this
classification model in the form of a client-oriented Firefox
plugin. Results show that across multiple implementations
of the plugin (Single Request Implementation and Batch
Request Implementation), a 31.6% and 66% reduction in Full
Page Load Time can be achieved respectively by blocking JS
code of classes Advertising, Analytics, Social and first party
non-critical scripts.

KEYWORDS
computer-networks, javascript-simplification, user-interface,
page-load-time
Reference Format:
Manesha Ramesh. 2020. JSCleaner: Firefox Plugin. InNYUADCapstone
Seminar Reports, Spring 2020, Abu Dhabi, UAE. 9 pages.

1 INTRODUCTION
A study by Google reveals that web pages that do not load
within 5 seconds lose about 90% of their visitors [3]. Nevertheless,
according to http archive, the number of requests per page
has increased by 29% from 2010 to 2019.Moreover, the average
download size per request has increased by 320% in the
same time duration [3]. With increasing size and complexity
of web pages, the web is experiencing what is colloquially

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Seminar, Spring 2020, Abu Dhabi, UAE
© 2020 New York University Abu Dhabi.

known as “web bloat” [12], resulting in a very “inefficient
use of network traffic and computation resources” [12]. In
regions with low-connectivity, the cost of loading heavy
web resources manifests itself in longer page loads and poor
browsing experience.
Many steps are involved in the loading of a web page:

making network requests, downloading web objects, issuing
DNS requests, processing JavaScript, generating the DOM,
CSS and render trees. Two primary factors that influence
the Page Load Times (PLT) are the costs of making network
requests and the processing time of the resources at the end-
user’s browser. JavaScript is proven to be the most expensive
resource forweb browsers to process [10], hence contributing
the most to Page Load Time.

JavaScript operates on the main thread of the browser and
therefore long execution times can block the thread and delay
the completion of the web page load [13]. Moreover, several
requests are made to the network to fetch these JavaScript
files as external resources. According to the Web Almanac
2019 report, web pages are sending a median of 19 JavaScript
requests [5]. Taking www.bbc.com as an example for web
page testing, JavaScript takes up 36.6% of the number of
requests and 53.8% of the download size [8].
According to Stack Overflow’s annual developer Survey,

over 67% of respondents have selected JavaScript to be their
favorite programming language making it the most popular
programming language for 7 years in a row [2] and constituting
95.2% of today’s web, despite being a costly resource. The
motivation behind using JavaScript is to enhance the interactivity
of web pages. To do so, developers are reliant on bulky
JS libraries and frameworks to speed up the development
process. JQuery, ReactJS and AngularJS are among the three
most popular web frameworks used in web development;
JQuery is the most popular JS library constituting 85.03% of
web pages accessed by desktops [2]. Inmost cases, developers
insert the entire library despite only needing a single function
from it. Smaller JS bundles on aweb page improves performance
in terms of not only PLT but also in bandwidth and energy
consumption (since the transfer size is low) [5]. Such libraries
are third party scripts which constitute a significant portion
of JavaScript in the web. A median of 89% more third party



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Manesha Ramesh

code is used than the first party code, being one of the biggest
contributors to the web bloat problem.

2 RELATEDWORK
In view of the problems that come with the pervasiveness of
JavaScript in the web, the research community has been
involved in producing strategies to simplify the web on
a page level and decrease PLTs. Some utilize server-side
technology to decrease PLT, some have focused on simplifying
web pages to be “readable”, while others analyze dependencies
on a very granular level [6]. SpeedReader upgrades the
implementation of reader modes (used to decrease page
clutter and extract the core content) by operating on a web
pages before page rendering as opposed to after the webpage
has been loaded. This decreases the number of network
requests and saves the processing power from rendering
many unnecessary media files. However, its benefits are
bound by the number of “readable” pages it can process,
which is only 22% of the sample in the SpeedReader work
[6].

On the other hand, Shandian relies on server-side technology
to reduce Page Load Times [14]. It simplifies client-side
loading by splitting the process between a proxy server and
the end user. The pre-processing of the web page in the proxy
server (with more computation power), reduces computation
costs on the end user’s device [14]. Although, Shandian’s
restructured architecture of the loading process reduces
the PLT, it does not attempt to simplify the content of the
webpages. Solutions for improving caching technology (edge
caching) as done so by xCache is another approach to the
issue at hand [11]. It also relies on a proxy server referred to
as a “CloudController” that optimizesweb content, maximizes
edge cache hit rates while also minimizing the bandwidth
usage for data updates [11].
Extensive research has been conducted regarding web

object dependencies on a granular level which have encouraged
the making of algorithms that can conduct critical path
analyses for web pages. Polaris is an implementation of
such dependency graphs. It harnesses server-side technology
(Scout) to produce dependency graphs for web pages [9].
Then, a client-side scheduler uses this dependency graph
while adjusting to network conditions to produce optimized
dynamic critical paths [9].
Web Simplification has been central to many kinds of

research in academia; because of its commercial benefits,
industry has attempted to intercept the challenge as well.
Facebook Lite is an example of an initiative by Facebook
which simplifies the web app for users in poor network
conditions [? ]. However, it is only designed for Facebook
applications. Google Amp is another project that is undertaken
by Google that enforces the use of a framework that curbs

the use of JavaScript by only allowing the use of Google
JavaScript [1]. However this can be restrictive as there
are certain front-end elements that cannot be implemented
within the boundaries of Google AmpAPI. Also, this initiative
only focuses on improving the Page Load Times of upcoming
applications and does little to simplify the clutter of the
existing web.

The JSCleaner Project [4] is a novel ongoing approach to
web and JS simplification in which the content is examined
and classified into different buckets that are expected to
describe the entire JavaScript content of the world wide
web [7]. This paper examines a client-oriented use case
scenario of this technology in the form of a Firefox plugin
that harnesses this technology of JS classification and allows
the user to achieve desired/customizable reduction of JavaScript
content. It implements the JSModel [7]which utilizes a combination
of aMachine LearningModel and rule-basedmodel to classify
JavaScript.

3 JSMODEL
The JSModel is an engine that assigns a class to each JS
resource loaded by a given web page [7]. This classification
of JavaScript into 14 categories caters to the customizable
simplification process in the plugin in which a lighter version
of the web page can be generated according to the user’s
preferences. The JSModel follows two layers of classification:
Third-party JS Model and First-Party JS Model. Figure 1
illustrates the full architecture.

Figure 1: The JS Model

Third-Party JS Model: A Third party JavaScript is a library
that can be hosted outside the server but can also live in the
web server as an imported external library. The first layer of
the classification model detects third party scripts using an
ML model that uses a Random Forest classification algorithm
to classify JavaScript elements into 12 categories as proposed
by Web Almanac:
(1) Advertising: Refers to scripts that embed ads in a web

page
(2) Analytics: Scripts that track or record user interactions

with web page



JSCleaner: Firefox Plugin Capstone Seminar, Spring 2020, Abu Dhabi, UAE

(3) Social: Refers to JS elements that enable social features
in a web page

(4) Video: Scripts that embed video players and manage
streaming functionality

(5) Utilities:Web developer utilities, sitemonitoring utilities
or fraud detectors

(6) Hosting: JS elements brought byweb hosting platforms
(such as WordPress or Wix)

(7) Marketing: Scripts brought by marketing tools (sales
and email marketing)

(8) Customer Success: Libraries brought from customer
support/marketing providers that offer chat and contact
solutions

(9) Content: Libraries brought by content providers or
publishing-specific tracking

(10) CDN: Publicly hosted open source libraries (JQuery),
served over public and private CDNs

(11) Tag Management: JS scripts that load other JS scripts
(12) Other: Refers to scripts that don’t belong to any of the

other above categories and are most likely first party
JavaScript files.

The ML model analyzes the content of the scripts in terms
of various JS API calls and generates a label. Although, this
model can technically label any type of JavaScript, it is
trained using Third Party JS Scripts. Therefore, it recognizes
third party scripts with a higher confidence score. Any script
that is labelled with a score that is lower than a threshold
of 60% is considered a first party script and passed to the
second layer of the model.

First Party JSModel: This is the second layer of classification
provided by the JSModel. Unlike the ML classifier in the
previous layer, this layer uses a rule-basedmodel that classifies
JS elements that are found in the "Other" bucket of the Third-
Party JS model [7].

The "Other" class consists of scripts that were not accurately
classified by the previous layer and are most likely first Party
JS elements. This layer further classifies such elements into
critical and non-critical scripts. The JSCleaner [4] identifies
three basic types of features: (1) Event Features (2) Write
features (3) Read features [7]. Based on these features the
following two classes can be assumed:

(1) Critical (Class 1): where event features and writing
features can be extracted and hence the JS element
should be preserved

(2) Non-critical (Class 2): where neither events or writing
features can be extracted from the JS code.

The user plugin implements this JSModel with the two
layers of classification using a combination of server-side
and client-side technology. This is described in detail in the
following section.

4 METHODOLOGY
4.1 Plugin Implementation
The JSCleaner user plugin labels JavaScript files, stores it
locally and blocks requests based on the user’s desired settings.
The labelling of the scripts occur in the server and the blocking
of unnecessary JavaScript takes place at the browser. The
Apache web server receives the unlabelled url(s) in the form
of a GET request from the plugin, uses the JSModel to label
them and then returns a JSON object. The browser receives
the JSONobject, updates its local database and blocks requests
accordingly upon page loads. Figure 2 illustrates the architecture
of the system.

Figure 2: The architecture of the JSCleaner Plugin

Web Server: The server that is used in this user plugin is
an Apache web server that implements the JSModel. When
it receives a url or a list of urls from the browser, it checks
its local database for the script. If it is not there, it makes
a request to the web to retrieve the content of the script.
Information about the combination of different JavaScript
features in the script is extracted and vectorized. This generated
vector is injected into the ML model which produces a label
and a confidence score. If this confidence score falls below
the threshold of 60%, the script is placed in the “Other”
bucket and passed onto the second layer of the classification.
The second layer further classifies the scripts in the "Other"
bucket into critical and non-critical JavaScript using the rule-
based model. After the labels are generated, the database
is updated and the JSON object containing the name(s), the
label(s) and the confidence score(s) is sent back to the browser.
Plugin: Before a request for a certain JS file is sent to the

web, the plugin checks if the script is labelled. If it is, it
blocks the script depending on the user’s settings. If it is not
labelled, a GET request is sent to the Apache web server with
the url(s).

Blocking:Harnessing thewebRequest API, blocking happens
when the onBeforeRequest event is fired. The plugin is only
capable of blocking already labelled scripts. Therefore, blocking
of JS files does not happen in the first page load; it happens



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Manesha Ramesh

in the Second Page Load (SPL). The plugin implements two
kinds of blocking:

(1) Cross-web page blocking
(2) Page-specific blocking

The user can block scripts based on classes on the settings
page of the plugin. However, if the user wishes to relax the
blocking of certain scripts, he may use the interface to enable
or disable specific scripts on a web page.

Storage: There are two levels of storage in this system; one
is managed by the server and the other is managed by the
plugin at the client’s end. As the server receives GET requests
from many browsers for JavaScript labelling, it is generating
a shared database of labelled scripts that can be shared across
all users of the plugin. As the database grows in size, the
response time of the web server is expected to be faster as
it will no longer need to rely on the ML model for every
request. The local storage mechanism at the client’s end
stores scripts names and their labels requested by the user’s
most frequented websites. The local storage of a browser is
limited to 5MB. To increase the storage capacity, the plugin
uses an API for client-side storage called IndexedDB - a
noSQL database - that can hold and manage data exceeding
5MB (limit is 50MB). The database contains two tables. One
table stores the url to scripts, their labels and the confidence
score. The other table stores the url of web pages that have
page-specific settings.
Interface: The JSCleaner plugin has provided the user an

interface to achieve a desired and customizable reduction in
page requests and page size. In figure 3, the user may select
a combination of classes that he/wishes to disable across all
websites loaded by the browser.

It may be the case that the user may want to enable a
certain script for a specific website that may conflict with
the all-browser setting,he/she may do so by managing the
scripts of a specific web page by navigating to it and enabling
or disabling specific scripts. This feature is in place to account
for websites that may break as a result of blocking classes
of scripts (Figure 4). For example www.instagram.com does
not load any content when a certain script of type Analytics
is blocked. This plugin provides an interface and mechanism
to create exceptions for such sites.
The plugin has been implemented in two different ways.

In Figure 2, it can be seen that for every request for an
unlabelled JS resource, the plugin sends a GET request to
the proxy. This is problematic because first page loads of
various sites can flood the network with requests. As an
attempt to reduce the number of requests, the plugin has
been implemented such that requests are sent to the proxy in
batches. From this point onward, the Batch Request
Implementation and Single Request Implementation will
be referred to as BRI ans SRI respectively. This paper will

Figure 3: Interface to enable or disable classes of JavaScript
across all sites

Figure 4: Interface to enable or disable scripts for a specific
site

evaluate and compare both implementations in terms of:
Page Load Time, JS requests and Transfer size.
BRI: In this implementation, the plugin collects urls of

requested JS resources and sends them to the Apache web
server in batches. The plugin does so bymaintaining an array
of scripts which upon reaching a threshold of size 5, sends the
following GET request to the server:

<IP_address_of_the_server:port_number>?url=<encoded_url
>,<encoded_url>,<encoded_url>,<encoded_url>,<encoded_url>



JSCleaner: Firefox Plugin Capstone Seminar, Spring 2020, Abu Dhabi, UAE

In case the threshold is not met, a timeout mechanism sends
the urls and clears out the array regularly.
SRI: In the first Page load of a given web page, for every

request for a JS resource, a GET request containing an encoded
url as a parameter is sent to the web server as follows:

<IP_address_of_the_server:port_number>?url=<encoded_url>

The web server returns a JSON object with the label and
confidence score for that script.

4.2 Challenges in the implementation:
When factoring in the limitless possibilities in the architecture
of variouswebsites, the plugin does fail under some circumstances.
After the implementation, somemanual tests were performed
on a list of 10 websites and the following challenges were
encountered:

(1) Scripts are requested from different domains on each
page load: This plugin distinguishes one script from
another based on its url. It does not have the ability to
check for similarity across scripts. For instance, when
loadingwww.sina.com/cn, two JS elements (toutiaobao.js
and sinaere.js) are requested from a different domain
on every page load:
First Page Load:
-> https://d2.sina.com.cn/litong/zhitou/sinaads/test/ e

-recommendation/release/sinaere.js,
-> https://d5.sina.com.cn/litong/zhitou/sinaads/demo

/jiliang/toutiaobao/toutiaobao.js
Second Page Load:
-> https://d9.sina.com.cn/litong/zhitou/sinaads/test/ e

-recommendation/release/sinaere.js
-> https://d6.sina.com.cn/litong/zhitou/sinaads/demo

/jiliang/toutiaobao/toutiaobao.js
The plugin treats requests for the same script from two
different domains separately. So, the same script will be
treated as a first encounter and labelled separately each
time without getting to the blocking. Therefore, even
after the second, third or fourth page load, sinaere.js
and toutiaobao.js are not guaranteed to be blocked.

(2) JavaScript file recognition: Before a request is sent, the
plugin only has access to information provided by
the request headers. The plugin recognizes JavaScript
files if the request headers categorize the element as
a resource of type ‘script or has “js”. Some web pages
request JavaScript files that are categorized as a resource
of a different type. For instance, https://outlook.live.com
/owa/ requests some JavaScript files (e boot.worldwide.0
.mouse.js, boot.worldwide.1.mouse.js,boot.worldwide.2
.mouse.js, boot.worldwide.3.mouse.js) that are of type
stylesheets. The plugin is able to recognize them as

scripts because the name of the scripts include a “.js”
file extension. However, this is not the most reliable
way of recognizing scripts because some urls to JS
resources may not have that identifier. For example,
when loading http://sohu.com/, a request is made to
https://txt.go.sohu.com/ip/soipwhich is a JS file but does
not have “.js” identifier. Fortunately, the request header
marks it as a resource of type script and as a result
the plugin manages to label the script returned by the
url. However, if a request that is neither formally of
type “script” and does not have a “.js” identifier may
be ignored by the plugin.

(3) Server Response Time: Sometimes the response time of
the server might be slow (especially if the urls are sent
in batches) and so some scripts may not be labelled in
time for the reload of the web page.

5 EVALUATION AND RESULTS
The goal of this plugin is to reduce the PLT, by curbing a
web page of unnecessary JavaScript. In order to evaluate
the plugin’s performance, the study takes Alexa’s top 50
websites and records metrics pertaining to load time, number
of requests and transfer size. In this experiment, the following
should ne noted:
(1) The most recommended setting for users is to disable

scripts of class Analytics, Advertising, and Social. This
is the setting used for the tests.

(2) To best show the performance of the plugin, the browser
cache has been disabled.

(3) The performance of the plugin will be compared to
the base case - page load without the plugin.

Page Load Time: To evaluate the performance of the plugin
based on Page Load Time, this study uses three different
metrics:
(1) Time to Interactive - Time it takes for a web page to

be interactive
(2) Time to DOMContentLoaded - Time to the point where

the DOM tree has been constructed and no stylesheets
are blocking JavaScript execution.

(3) Full Page Load Time - Time to the completion of the
web page load

Figure 5 illustrates an almost 31.6% reduction in the average
Time to DOMContentLoaded and Full Page Load Time in
the SPL. However, reduction in Time to Interactive is < 1%.
The First Page Load has a higher average load time than the
base case because of the computational overhead cost that
comes with delaying the requests that are being sent from
the browser to check if the script is unlabelled or labelled.
Figure 6 plots the cumulative distribution of the Full Page
Load for SRI. The median page load time for SPL and the



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Manesha Ramesh

Figure 5: Average Page Load Times in the First Page Load
(FPL) and Second Page Load(SPL) for the Single Requests
Implementation and the base case

Base Case is 3.787s and 2.117s respectively indicating a 44%
reduction in load time.

Number of Requests and Transfer size: The decreased Page
Load Time is justified by figure 7 and 8 which describes the
reduction in page content (JS requests and page size). The
number of requests to JS resources and the transfer size in
the FPL are similar to the base case because blocking does
not occur then. Nevertheless, in the SPL, with the blocking
of non-essential JS scripts, the median number of JS requests
is 2 which is a 50% reduction from the base case. The transfer
size too decreases with reduced JS requests. In the base case,
page size can go over 6MB while in the SPL of the SRI the
page size does not exceed 4.21 MB. Moreover, with the plugin
50% of the pages can have a size of no more then 0.38MB
which is a 26% reduction from the base case (0.522MB). hence,
blocking non-essential JavaScript decreases the page size and
JS requests along with page load time.

5.1 Batch Requests
The underlying issuewith the Single Request Implementation
is the doubling of requests. For each request to a JS resource
another request is sent to the Apacheweb server. Therefore, a
second implementation strategy for the plugin was designed
in which one GET request to the web server is sent for every
five JS scripts. The results of this evaluation are illustrated
in the figures 9, 10, 11 and 12.
Page Load Time: It is clear that BRI outperforms SRI in

terms of PLT. On average, the second page load of BRIwitnesses
a 66% reduction in Time to DOMcontentLoaded and Full Page
Load Time compared to the 31.5% reduction in SRI (Figure 9).
Unlike in the former implementation, there is a 36% decrease
in the average Time to interactivity as well. 50% of pages
have a page load time of up to 1.633s which indicates a

Figure 6: Cumulative Distribution of Full Page Time the of
SPL, FPL ans the base case

Figure 7: Cumulative Distribution of the number of requests
to JS resources in the First Page Load (FPL), Second Page
Load (SPL) and base case

Figure 8: Cumulative Distribution of the total transfer size
in the First Page Load (FPL), SecondPage Load (SPL) and base
case



JSCleaner: Firefox Plugin Capstone Seminar, Spring 2020, Abu Dhabi, UAE

Figure 9: Averages of Time to Interactive, Time to DOM
ConentLoaded ans full page load time for BRI, SRI and base
case

reduction of 56% from the base case as opposed to the 44%
in the SRI. Notice that the maximum PLT is 10.171s whereas
SRI and the base case exceed 30 seconds. This improvement
in performance can be due to the reduced network requests;
this avoids network flooding and improves server response
time by not eating up the network bandwidth. Another viable
reason is that in SRI the process of checking whether a script
is labelled occurs when the onBeforeSendHeaders event is
fired in the browser which is followed by the onBeforeRequest
event. Blocking can only occur in the latter stage. In BRI,
GET requests to the web server for unlabelled scripts are
sent when the former event is fired and the labelled scripts
are recognized and blocked in the latter stage. This process
is non-blocking and occurs synchronously. However, in the
SRI implementation, both the GET requests for labelling and
the blocking happen on the onBeforeRequest stage and thus
both operations occur asynchronously resulting in a longer
delay for each request to a JS resource. In other words, the
BRI takes advantage of browser’s synchronous nature while
SRI does not and incurs lower computational costs for the
former.
Number of requests and Transfer Size: Surprisingly there

is a difference in JS requests and page size between BRI and
SRI in the SPL. Although, the median number of requests for
BRI is equal to the SRI,the average for BRI, 4.65 requests, is
lower than that of SRI, 5.38 requests. The difference can be
visually observed in Figure 12. The median transfer size for
BRI is 0.30MB which is 22% lower than that of SRI and 43%
lower than the base case. The difference may be because of
BRI’s better performance (in terms of lower computational
overhead) which allows for more labelling to occur in time
for the second page load (detailed explanation under Page
Load Time) and hence more requests are blocked.

Figure 10: Cumulative Distribution of full page load time in
the Second Page Load for BRI, SRI and Base Case

Figure 11: Cumulative Distribution of number of JS requests
in the second page load for BRI, SRI and Base Case

Figure 12: Cumulative Distribution of page size in the
second page load for BRI, SRI and Base Case

5.2 Distribution of JavaScript Classes
This section is a commentary on the labelling process of the
JSModel. From the list of Alexa’s top 50 websites, a total of
2416 labelled scripts were gathered in the server’s database.
Figure 13 and 14 portray the distribution of classes in this
data set.



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Manesha Ramesh

About 80% of scripts are labelled as "Other" and are passed
to the First Party JS Model. That means only about 20% of the
scripts are recognized as a class of Third Party Scripts with
a confidence of over 0.60. The performance of the plugin
depends heavily on the ability of the ML model to classify
JavaScript with a high confidence. Perhaps, the plugin would
be able to perform better with a wider distribution of labels
and a larger cluster of recognized Third Party JS scripts.
Moreover, the following figure shows the distribution of
classes in the second layer of the JSModel. According to our
model, 45% of scripts are non-critical and hence blocked
when requested by the user plugin. This means, scripts that
don’t perform any significant operation on the DOM tree
of a web page take up a massive percentage of first party
JavaScript. This demonstrates the need to curb the web of
JavaScript that reduce the bloat and as a result decrease page
load time.

Figure 13: Distribution of Labels in the Third Party JS Model

Figure 14: Distribution of Labels in the First Party JS Model

6 CONCLUSION
The JSLCleaner user plugin demonstrates the potential of
the JSCleaner project as a client-oriented use case scenario.
This plugin provides an interface for normal users to this
classification-based JS simplification algorithm, encouraging
them to make more well-informed decisions regarding the
blocking of scripts and giving them the agency to decide
which scripts are necessary and which are not. Moreover, a
large-scale deployment of this plugin would also generate
a comprehensive database of labelled scripts. While users
in developed regions populate the database with their use
of the web, users in developing regions can benefit from its
growing classification and hence web simplification capacity.

As of now the plugin labels scripts in the first page load and
blocks scripts in the second page load. A possible implementation
in which the scripts can be blocked in the first page load
deserves some attention. The labelling component part of
this project classifies based on content without checking for
similarity with other scripts. Hence, this results in redundant
analysis and labelling. The efficiency of the labelling can be
upgraded if another layer is added to the JSModel architecture
that allows for similarity checks.
Because the tests were performed semi-manually, this

study uses a small size of 50 websites to analyze the effect
of the plugin’s blocking on Page Load Time, number of JS
requests and Page size. Formore precise results and smoother
cumulative distributions, future tests should be performed
on a larger data set.
The evaluation surfaced the difference in performance

between the BRI and SRI because of the computational overhead
that comeswith asynchronous computing. Due to time limitations,
this capstonewas unable to change the SRI to amore synchronous
approach and evaluate it. However, any future work should
re-evaluate the performance difference between BRI ans SRI
while both operate asynchronously

Although the quantitative analysis of this user plugin’s
performance proves a reduction in Page Load Time and
JS transfer size, a qualitative analysis of this plugin is also
required to check if the web pages before and after blocking
are similar and functional in terms of interactivity . Due to
the limitations of the corona crisis outbreak, this was not
possible. However, any future efforts to improve this plugin
must include a qualitative evaluation.

7 ACKNOWLEDGEMENTS
A heartful gratitude is due to both Yasir Zaki and Moumena
Chaqfeh for their counsel and guidance. I would also like to
thank my friends Shivani Mishra, Armaghan Khan, Febin
Thapa Magar and Manson Tung for their moral support.



JSCleaner: Firefox Plugin Capstone Seminar, Spring 2020, Abu Dhabi, UAE

REFERENCES
[1] [n.d.]. AMP - a web component framework to easily create user-first

web experiences. https://amp.dev/
[2] [n.d.]. Stack Overflow Developer Survey 2019. https://insights.

stackoverflow.com/survey/2019
[3] 2017. Find Out How You Stack Up to New Industry Benchmarks

for Mobile Page Speed. https://www.thinkwithgoogle.com/intl/en-
aunz/advertising-channels/mobile/au-mobile-page-speed-new-
industry-benchmarks/

[4] Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian.
2020. JSCleaner: De-Cluttering Mobile Webpages Through JavaScript
Cleanup. In Proceedings of The Web Conference 2020. 763–773.

[5] Houssein Djirdeh. 2019. JavaScript: 2019: The Web Almanac by HTTP
Archive. https://almanac.httparchive.org/en/2019/javascript

[6] Mohammad Ghasemisharif, Peter Snyder, Andrius Aucinas, and
Benjamin Livshits. 2019. SpeedReader: Reader Mode Made Fast and
Private. In The World Wide Web Conference. 526–537.

[7] Muhammad Haseeb, Moumena Chaqfeh, Manesha Ramesh, Vladyslav
Cherevkov, Gabriel Garcia Leyva, Fareed Zaffar, and Yasir Zaki.
2020. JSModel: Analyzing JavaScript in Today’s Web Using Machine
Learning. In ACM IMC 2020. Under Submission.

[8] Patrick Meenan. [n.d.]. WebPageTest. https://www.webpagetest.org/
[9] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan.

2016. Polaris: Faster page loads using fine-grained dependency
tracking. In 13th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16).

[10] Addy Osmani. 2019. The Cost Of JavaScript In 2018. https://medium.
com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4

[11] Ali Raza, Yasir Zaki, Thomas Pötsch, Jay Chen, and Lakshmi
Subramanian. 2017. xcache: Rethinking edge caching for developing
regions. In Proceedings of the Ninth International Conference on
Information and Communication Technologies and Development. 1–11.

[12] M. Selakovic and M. Pradel. 2016. Performance Issues and
Optimizations in JavaScript: An Empirical Study. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). 61–72.

[13] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2013. Demystifying page load performance
with WProf. In Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13). 473–485.

[14] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall.
2016. Speeding up web page loads with shandian. In 13th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
16). 109–122.

https://amp.dev/
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.thinkwithgoogle.com/intl/en-aunz/advertising-channels/mobile/au-mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/intl/en-aunz/advertising-channels/mobile/au-mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/intl/en-aunz/advertising-channels/mobile/au-mobile-page-speed-new-industry-benchmarks/
https://almanac.httparchive.org/en/2019/javascript
https://www.webpagetest.org/
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4

	Abstract
	1 Introduction
	2 Related Work
	3 JSModel
	4 Methodology
	4.1 Plugin Implementation
	4.2 Challenges in the implementation:

	5 Evaluation and Results
	5.1 Batch Requests
	5.2 Distribution of JavaScript Classes

	6 Conclusion
	7 Acknowledgements
	References

