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ABSTRACT
Classifying objects within aerial light detection and ranging
(LiDAR) is an essential task that has recently been auto-
mated by machine learning. Conventional machine learning
techniques cannot be used for 3-dimensional LiDAR data,
prompting a recent growth in the development of neural
networks specifically for 3D data. However, there has not
been an examination into the quantity of data required for a
high performing model that is reliable. Provisioning aerial
LiDAR data requires significant manual labour, so there is
an incentive in finding out how much data are required for a
model to achieve good performance. This project assess the
impact of the number of objects in the training data quantity
on the classification accuracy of PointNet, a deep learning
framework tailored for 3D point clouds. It is found that the
underlying assumptions about training data for such net-
works remain largely uncovered and unaddressed. A Point-
Net implementation is trained on subsets of a large data set
that contain an increasing number of objects, from 40 to
2000. It is seen that the accuracy of this implementation im-
proves at a logarithmic rate within this data range and starts
to even out at approximately 600,000 training points. This
work provides a benchmark for subsequent development by
establishing a learning curve for 3D-focused classification
models and suggests how much data should be manually
labelled and used for training when the model is used on
new data.
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1 INTRODUCTION
Aerial light detection and ranging (LiDAR) data are useful
for various mapping, surveying, and planning purposes in
urban and natural areas. The data are most often found as a
collection of points known as a point cloud, in which each
point contains x, y, and z coordinates, return intensity, the
number of returns from that particular coordinate, a times-
tamp, and source or flight line information. Specifically in
urban modelling and planning, the classification of points
in the point cloud is essential for object identification, and
LiDAR data has been demonstrated to be more effective than
imagery for urban object classification [6]. This classification
is sometimes done by identifying features of the data, and
using predictive models or machine learning-based models
on these features, but these techniques involve significant
human or computational resources [3]. With the develop-
ment of deep learning models, much work has been done
in applying and modifying these techniques to be used for
3-dimensional, particularly LiDAR, data, increasing the effi-
ciency of the classification task.

1.1 Challenges with 3-dimensional LiDAR
data

Certain properties of 3-dimensional data present a challenge
to typical machine learning models used for object classifi-
cation in 2-dimensional imagery, so these models cannot be
directly applied to LiDAR data sets.

1.1.1 Greater information dimensionality. LiDAR data con-
tain more information than images. Converting LiDAR data
to 2D using projection, therefore, loses information in the
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third dimension and introduces false relations by collapsing
the space between points [5]. For example, two points be-
longing to different objects have no contextual relation in the
original data, but could be contiguous in its 2-dimensional
projection. The assumption of continuity is unnecessary and
negatively impacts the accuracy of the classification. On the
other hand, some classification approaches turn the point
cloud into voxels. This approach this massively increases the
space complexity by filling up the space between points and
adding volume.

1.1.2 Unorderedness. A given dataset is typically collected
over several flight paths that cover the total area from dif-
ferent angles, potentially going over a single point on the
ground multiple times, or with paths overlapping each other.
A point cloud differs from pixels in an image or voxels be-
cause the points are not ordered. The model that does clas-
sification must not depend on the input data being fed in a
particular order.

1.1.3 Relation to other points. A given point, together with
its neighboring points, usually forms a meaningful subset,
therefore points cannot be considered in isolation. In other
words, the classification of a point must be consistent with
its neighbors. Moreover, the spatial relation between points
must be preserved when the points undergo transformations
or convolutions.

1.1.4 Discontinuity. The geometric properties of the data
set that is collected largely depends on the characteristics
of the objects and surfaces in the area covered. For instance,
a water covered surface, parts of the ground obstructed by
trees, and vertical surfaces will have fewer LiDAR returns.
The image in Figure 1 shows an example of this in the Vaihin-
gen data set. As a result, the final data set is discontinuous,
with sections of it that are completely empty when visual-
ized in a 3-dimensional space. Points are also not uniformly
distributed, and density of points can vary across the data set.
The model used thus has to be tolerant of this discontinuity
as well as non-uniform density.
With increased understanding of the benefits of LiDAR-

based urban object classification, significant effort has re-
cently been put into developing neural networks from the
ground up that are more suited for point clouds because they
fully consider their properties. The focus of this research has
been on developing and adapting novel techniques for the
development of new models, so they are mostly driven by
performance results. In contrast, there is less focus on deter-
mining what training data are best suited for such models.
Quantity of training data is one significant factor, amongst

Figure 1: Non-uniform density in trees and roofs

others such as balance of objects across class, motion, posi-
tion, or orientation of objects, and density. While it is gen-
erally assumed that more training data will improve perfor-
mance, there is no clearly established relationship between
training data quantity and performance of a LiDAR-focused
classification model.
Thus, the objective of this project is to assess the impact

of training data quantity on performance of LiDAR-focused
object classification models.

2 RELATEDWORK
2.1 Feature-based learning
Other than aerial scanning, autonomous driving is another
field in which LiDAR is a prominently used technology. Song
et. al. use a feature-based approach to object classification for
the application of self-driving vehicles. They derive these fea-
tures by calculating the volume, density, and eigenvalues in
three directions of each object. These statistical features are
then used to divide the objects into categories. Then, a back-
propagated neural network is trained on these features and
then used to classify objects in a given scene. However, this
methodology requires on the laborious task of crafting fea-
tures by hand, as Song et. al. note that the model’s accuracy
can only be improved "by gathering more manually-labelled
object feature datasets" [7]. For very large, dense data sets,
such as the Sunset Park data, the amount of human and
computational resources required for crafting such features
would make it an inefficient task.

In addition, hand-crafted features consider points in isola-
tion, giving each point a label based on the features calculated
of that point alone with ensuring that it is consistent with
the neighboring points [8]. This results in a noisy and incon-
sistent labelling, for instance within an object with points
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mostly classified as tree, there may be several "noisy" points
classified as person.

2.2 PointNet
Qi et. al. develop a neural network that directly acts on point
clouds rather than converting data into 3D voxels or relying
on hand crafted statistical features. The result is the abil-
ity to process points in O(N) time and space. In contrast,
other methods that convert the data into images or volumes
have required O(N2) or O(N3) time and space. PointNet also
achieved a state of the art performance at its time.
The development of PointNet uses the ModelNet data

set, consisting of 12,311 CAD models. These are split into
9,843 samples for training and 2468 samples for testing [9].
This means that PointNet is designed for identifying smaller,
mostly indoor objects such as chairs or tables, rather than
for remote sensing.

Qi et. al. do describe an application for semantic segmen-
tation, which is identifying semantic objects out of a scene
containing several objects. Given an input data of a scene
containing many objects, each point in the scene will be
given one label corresponding to one of the categories it was
trained on. In this case, the input data are divided into blocks
of equal size. However, these are also from a close proximity
and do not fully resolve the issues presented by large-scale
aerial data. Large objects from a greater distance such as
trees or buildings may have shapes that are not as densely
defined and also feature more noise, occlusions, and clutter
[11].

2.3 PointNet-inspired convolutional
neural networks

While some studies have concluded that training separate
neural networks for short-range versus long-range objects
result in better performance [2], some such as [11] find that
using an overlapping technique in the input blocks trains the
model to recognize objects of different scales, preempting
the need for separate networks for different scales. This
suggests that a performance analysis of PointNet can still
be beneficial and applicable to establishing the relationship
between performance and data size with regards to aerial
data.

Other models that are inspired by PointNet modify the ap-
proach in a way that is agnostic to the artefacts of aerial data.
Wen et. al. produced a "directionally constrained" fully convo-
lutional neural network (D-FCN) that performs convolutions
considering the orientation of objects. As a directionally con-
strained network, information in the z-direction were not
considered [8]. This is based on the idea that not every point
requires information from its neighbors to be collected in
the z direction, because many surfaces, such as rooftops, will

Figure 2: Learning curve showing accuracy versus
number of training samples [4]

not have points above them, while surfaces such as roads
will have no points below them. Unlike [11], they do not
rely on hand-crafted features, which are tedious to derive,
and achieve a high performance using only the 3D coordi-
nates and intensity. Their improvement from is that it does
not rely on hand-crafted features which are tedious. Only
the 3D coordinates and intensity are sufficient for the high
performance that it achieves.

Much of the literature uses the same data set with nearly
the same training and validation split. For instance, [11] use
753,859 training points and 411,721 testing points while [8]
use 753,876 training points and 411,722 testing points, both
from the ISPRS Vaihingen data set.

2.4 Learning curves
The performance of any machine learning algorithm can be
quantified by a learning curve, which benchmarks a general-
ization performancemetric, such as accuracy or error, against
the quantity of training data [1]. The quantity of data can be
either number of training iterations, or epochs, or number of
training samples [4]. The model’s performance on training
set is also sometimes displayed to show the progress in learn-
ing. By illustrating the effect of training different amounts of
data, one can determine at what point the amount of training
data is considered sufficient, how much is redundant, and
possibly at what point the amount of data causes overfitting.
Simple examples can be seen in Figures 1 and 2.

[4] also reaffirms that in comparative analysis of machine
learning models, results that are reported on a fixed-size
training data set do not provide any information on how the
model would fare with differing training data sizes. Most
papers report results in this way, as seen in the PointNet-
derived neural networks discussed which train on the same
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Figure 3: Learning curve showing generalization and
training error versus training iterations [4]

data set. The insight on varying training data size is impor-
tant to ascertain the reliability of the model in new appli-
cations, where the amount of training data available is not
always the same as what the model was trained on during
development. Evaluating performance using different sizes
of data can therefore increase the robustness of the model,
providing more holistic insights rather than only testing and
reporting results achieved on fixed data sets.

The gap in theoretical foundation regarding learning curves
has been investigated to some extent for neural networks
in general. Cohen et. al. find that neural networks are often
built for a specific application, focusing solely on perfor-
mance and achieving this higher performance by modifying
the parameters based on trial and error rather than on the-
ory. They thus conduct a meta analysis of learning curves
[1]. They use a physics-like approach attempting to model
learning curves with Gaussian Processes, and suggest that
this successful in predicting learning curves for the kind of
neural networks they examine as seen in Figure 4.
Although there is a general preference for more training

data, provisioning the training data by identifying and la-
belling new samples manually is a laborious task especially
for LiDAR. Even with improvements in the time and space
complexity of classification itself, existing methods involve
high complexity preprocessing of input data. There is thus
an incentive to examine the precise change in performance
with incrementing input data examples.

3 METHODOLOGY
3.1 Scope
This research experiments on an implementation of PointNet,
which has state of the art performance and is also accessible
to run. Firstly, this work uses the number of objects in the

Figure 4: Experimental versus predicted learning
curves [1]

training data as a metric of size, treating this as the indepen-
dent variable in the study, and compares this number with
accuracy, calculated as the proportion of true positives out
of all the labels made by the model. It presents the results
in terms of two relationships: between epoch and accuracy,
and between size and accuracy. Finally, it discusses ways to
improve robustness of the results gathered.

3.2 Data set
Exploratory observations are carried out on the visualization
software CloudCompare on the Vaihingen data set as well as
Sunset Park data set collected by the Urban Modelling Group
(UMG) at the Center for Urban Science and Progress. The
main performance analysis uses the ModelNet data set con-
sisting of CAD scans of objects spread across 40 categories.
The distribution is shown in Table 1.

Airplane 727 Cup 100 Laptop 170 Sofa 781
Bathtub 157 Curtain 159 Mantel 385 Stairs 145
Bed 616 Desk 287 Monitor 566 Stool 111
Bench 194 Door 130 Night stand 287 Table 493
Bookshelf 673 Dresser 287 Person 109 Tent 184
Bottle 436 Flower pot 170 Piano 332 Toilet 445
Bowl 85 Glass box 272 Plant 341 TV stand 368
Car 298 Guitar 256 Radio 125 Vase 576
Chair 990 Keyboard 166 Range hood 216 Wardrobe 108
Cone 188 Lamp 145 Sink 149 XBox 124

Table 1: ModelNet object distribution

3.3 Model architecture and
implementation

Figure 5 displays a diagram of the PointNet classification
architecture.
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Figure 5: PointNet classification architecture [5]

PointNet’s architecture for classification receives an input
of a number of points as input. It applies transformations
between two multi-layer perceptrons (mlp) and then aggre-
gates point features by max pooling. Finally, to leverage
both global knowledge of points in the whole cloud and lo-
cal knowledge of neighboring points in the classification, a
global feature vector is calculated and applied to local feature
vectors. The features on each point thus contain both local
and global information, allowing for an informed classifica-
tion [5] The output is a number of classification scores, one
for each class that the label could be chosen from. Since 40
categories of objects are present, the model will output 40
scores for each of the 400 test objects, choosing the label
with the highest score.

This project builds off a Pytorch implementation of Point-
Net developed by Yan et. al. [10].The implementation takes an
input of a list of text files, where each file represents an object
and contains the points that make up the object. It imple-
ments PointNet in Pytorch, and in every run of classification
training, it outputs a pth file containing the configuration of
the model and a logfile consisting the model’s performance
on training data, overall and class performance on test data,
and time stamps.

3.4 Preprocessing
3.4.1 Preliminary analysis. Four size-related features in the
training data were originally identified: number of points,
number of overlapping points across objects, the variation
of number of points in each object, and number of objects.
The number of objects was chosen as the feature to focus
on because of the semantic value it has. It also matched the
format of data necessary for the PointNet implementation as
described above, which trains on individual files containing
a collection of points that each represent an object.
Manual analysis was performed on the Sunset Park data

set by visualizing it in CloudCompare. This revealed that
there are further elements to the number of objects that
could be explored. For instance, cars included both moving
and stationary cars, and stationary cars included both cars

stopped at a traffic light or parked cars. An example of this
difference can be seen in Figure 6.

Figure 6: Moving cars (left) and parked cars (right)

3.4.2 Segmentation. A schedule was devised listing the pro-
gression of training sizes as follows: 40, 80, 120, 240, 320, 400,
600, 800, 1000, 2000. The distance between the larger training
sizes is greater because as the accuracy results were plotted
for each size, it was perceptible that the rate of improvement
was slowing. Using larger data set allowed for acquisition
of more insights on the shape of the learning curve without
having to train on the intermediate sizes.
For each size n in the training size list, n/40 objects from

each category were taken for training. The last 100 objects
from each category were taken for testing for all the input
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sizes. Both the training and testing data sets were balanced
across all 40 categories for every round. The data was seg-
mented in this manner with Python scripts.
The code base of the PointNet implementation was mod-

ified to create the ability to use data of different sizes for
training, instead of only a single default size.

3.5 Training
The runs with 40, 80, 120, 240, 400, and 600 objects were
trained on 100 epochs. Following the visualization of these
results, the subsequent runs with 800, 1000, and 1200 objects
were trained on 120 epochs to see if increasing the number
of epochs would affect the pattern of the learning curve over
epochs.
At each epoch, the model’s accuracy on classifying the

training data and both the overall accuracy aswell as category-
specific accuracy on classifying the test data was recorded.
If the accuracy on test data for a given epoch exceeded the
highest saved accuracy so far, the results for that epoch were
saved as the best instance accuracy.
PointNet was used with the parameter configurations

shown in 2 for all runs.

Name Value
Batch size 24
Learning rate 0.001
Optimizing algorithm Adam
Decay rate 0.0001

Table 2: PointNet parameter configurations

4 EVALUATION
4.1 Raw data
Table 3 displays a section of the raw results obtained, dis-
playing the accuracy on each training data set size at every
10 epochs. These numbers are processed and analyzed in the
following sections.

4.2 Accuracy versus training iterations
The graph in Figure 7 illustrates the results for each run
plotted against epoch. The line for training data size 40 is
significantly visually different than the others because of its
flat start, indicating a slow start in model’s learning. Indeed,
the log file containing the precise values shows that the
model consistently has an accuracy of 0.024510 on unseen
data for the first 37 epochs, and only at the 38th epoch does
it start increasing.
The general shape of the curves shows that as training

size increases, there is a decelerating increase in accuracy.
We can also estimate that rate of learning starts evening out

Figure 7: PointNet accuracy versus epoch

at approximately 20 epochs for all training sizes. For size 40,
whose performance started improving only after epoch 37,
the line starts to plateau near 57, corresponding to only 20
epochs of growth similar to the other plots.

The line for 800 features a sharp drop near epoch 79, which
was caused by interruption of the training due to themachine
crashing. Themodel, however, resumed training from a saved
checkpoints and seems to reach the same peak accuracy
value as before the interruption.

The plots of raw accuracies contain many overlaps es-
pecially in the earlier stages of training. To improve the
visibility of the individual lines and allow for clearer compar-
ison between them, the moving mean of the accuracy can
be taken.
Figure 8 plots the same points but with a moving mean

window of 10. With the smoothing of the curves, they more
resemble the shape of the curve in the example of Figure
2. The gaps between the curves also reveals that for the
most part, the model’s performance has a greater jump when
training data size is increased at lower values, and a smaller
jump when training data size is increased at higher values.
For example, the last data size of 2000 is double the value
of the preceding size, and this interval is the largest. Yet the
gap between this pair of curves is not significantly bigger
than others. The training data sizes are not evenly spaced
apart, so we need to account for this before making more
detailed claims about the differences.

4.3 Learning curve
To account for the varying interval sizes in training data, the
best instance accuracy for each run was then extracted and
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Accuracy on Training Set Size
Epoch 40 120 240 320 400 600 800 1000 2000
1 0.02451 0.02451 0.02451 0.02451 0.02451 0.02451 0.04902 0.088235 0.433824
10 0.02451 0.193627 0.474265 0.427696 0.53799 0.557598 0.617647 0.506127 0.745098
20 0.02451 0.370098 0.536765 0.520833 0.578431 0.632353 0.723039 0.719363 0.76348
30 0.02451 0.448529 0.574755 0.594363 0.585784 0.63848 0.724265 0.726716 0.751225
40 0.034314 0.471814 0.567402 0.590686 0.607843 0.659314 0.723039 0.732843 0.795343
50 0.160539 0.474265 0.60049 0.610294 0.664216 0.710784 0.740196 0.769608 0.834559
60 0.240196 0.479167 0.594363 0.61152 0.666667 0.753676 0.764706 0.811275 0.848039
70 0.267157 0.477941 0.626225 0.615196 0.654412 0.738971 0.740196 0.800245
80 0.281863 0.485294 0.609069 0.639706 0.644608 0.73652 0.743873 0.801471
90 0.291667 0.480392 0.612745 0.643382 0.685049 0.72549 0.757353 0.803922
100 0.301471 0.378676 0.616422 0.651961 0.702206 0.759804 0.756127 0.803922
110 0.773284 0.817402
120 0.789216 0.819853

Table 3: Raw accuracy values every 10 epochs on training set size

Figure 8: PointNet moving mean accuracy versus
epoch

graphed. Figure 9 illustrates the relationship between train-
ing size and the best instance accuracy. This graph resembles
a logarithmic growth curve. The accuracy starts plateauing
after a training set size of 600. The 600 size was trained on
with 100 epochs while the 800 size was trained on with 120
epochs. Looking at Figure 8, it is apparent that performance
on the 600 size and 800 size plateau to almost the same value
at 100 epochs, and the performance for 800 size increases
shortly after. Even before the outlier caused by interruption
in size 800, the curve for size 600 approaches it very closely.

Figure 9: PointNet accuracy versus training dataset
size

This suggests that the improvement in classification accu-
racy after 600 is small compared to the increase in training
size.

This curve fits a logarithmic function as shown in Figure
10, quantifying a decaying rate of learning.

5 DISCUSSION
These results are in accordance with the typical shape of
learning curves found in [4] and [1]. However, this pattern
needs to be ascertained by training on larger sizes, using
different perturbations of the objects in the training and test
set, and applying it to different data sets altogether. Since
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Figure 10: PointNet accuracy versus training dataset
size with logarithmic curve fitting

the likelihood of overfitting increases with larger training
sets, it is worthwhile to see if this point is reached with these
other methods.
The results show a relationship of logarithmic accuracy

growth as the number of objects in the the training set in-
crease. This relationship can be examined in more complex
detail in the manner undertaken in [1] with more data points.
One such way is to use a Poisson process to understand the
distribution of points and predict the learning curve.

The literature also discussed the differences in aerial and
close range LiDAR data in [8] and [11], such as aerial data
having lower and more inconsistent density per volume of
an object. Although the data used in this work was close
range, the techniques may be applied to aerial data with
further experimentation. Aside from extracting objects from
aerial data and testing how well the model classifies the, the
training data can be manipulated to resemble aerial data and
examine the accuracy in the same way.

6 CONCLUSION
The novelty of neural networks dedicated to LiDAR means
that to date, most effort has been spent on actually develop-
ing new networks rather than evaluating the characteristics
of their training. As such, many fundamental questions on
how performance changes with changes in input data re-
main unexplored, a major one being quantity of data. This
research project addresses this gap by assessing the impact
of data quantity on the classification accuracy of PointNet,
and is thus a theoretical foundation for further analysis of
input data changes and their impact on model performance.
We find that the model’s rate of learning in terms of accu-
racy improvement per epoch is not affected by the size of

the training data set. All sizes exhibited a slow in accuracy
improvement following epoch 20. The objects in the training
data were found to each contain 10,000 points. The learning
curve starts plateauing at a training set size of 600, with a
very small increase from 1000 to 2000, meaning the corre-
sponding number of points at which improvement slows
drastically is 600,000.
These results should be considered a preliminary step in

understanding the nature of training data best suited for
optimizing LiDAR-focused classification models, based upon
which further work can make the current landscape in ma-
chine learning for LiDAR more cohesive. As future work,
the model should continue being trained on larger sizes of
data to see how the curve moves over more training samples,
as well as on different combinations of object samples in
the training and test data sets. This is crucial in knowing
whether the fit applied on the results so far is true to the
data.

The classification errors at the end of every stage can also
be analyzed to identify specific characteristics of objects that
are misclassified, for example being stationary or moving,
partial obstruction, or orientation. Additionally, if patterns
of misclassification are revealed to exist, they can be used to
test and correct imbalance in the training data.
Additionally, the implementation’s performance with di-

rect aerial data should also be further thoroughly examined,
since its simplicity and accessibility make it a convenient
tool for classification. Each of the objects used in training
contained 10,000 points, so the training data was balanced
unlike most aerial data. It is worth examining the effect of
uneven distributions in both the number of points per object
and number of objects per category. Another way that the
performance with aerial data can be evaluated is using the
density variation technique from [11]. Since indoor, near
objects have a more defined shape and a higher number of
points per unit volume compared to aerial data, the model
would be less accurate on sparse data sets if it were trained
on denser ones. Thus, it may be worth investigating the ef-
fect of deprecating density in training data on the model’s
accuracy on aerial data sets.
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